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Abstract. We investigate algorithms for reconstructing a convex body K in Rn from noisy
measurements of its support function or its brightness function in k directions u1, . . . , uk. The
key idea of these algorithms is to construct a convex polytope Pk whose support function (or
brightness function) best approximates the given measurements in the directions u1, . . . , uk (in
the least squares sense). The measurement errors are assumed to be stochastically independent
and Gaussian.

It is shown that this procedure is (strongly) consistent, meaning that almost surely, Pk

tends to K in the Hausdorff metric as k →∞. Here some mild assumptions on the sequence
(ui) of directions are needed. Using results from the theory of empirical processes, estimates of
rates of convergence are derived, which are first obtained in the L2 metric and then transferred
to the Hausdorff metric. Along the way, a new estimate is obtained for the metric entropy of
the class of origin-symmetric zonoids contained in the unit ball.

Similar results are obtained for the convergence of an algorithm that reconstructs an ap-
proximating measure to the directional measure of a stationary fiber process from noisy mea-
surements of its rose of intersections in k directions u1, . . . , uk. Here the Dudley and Prohorov
metrics are used. The methods are linked to those employed for the support and brightness
function algorithms via the fact that the rose of intersections is the support function of a
projection body.

1. Introduction

The problem of reconstructing an unknown shape from a finite number of noisy measure-
ments of its support function (giving the (signed) distances from some fixed reference point,
usually taken to be the origin, to the support hyperplanes of the shape) has attracted much
attention. The nature of the measurements makes it natural to restrict attention to convex
bodies. Prince and Willsky (1990) used such data in computerized tomography as a prior to
improve performance, particularly when only limited data is available. Lele, Kulkarni, and
Willsky (1992) applied support function measurements to target reconstruction from range-
resolved and Doppler-resolved laser-radar data. The general approach in these papers is to fit
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a polygon or polyhedron to the data by a least squares procedure. In contrast, Fisher, Hall,
Turlach, and Watson (1997) use spline interpolation and the so-called von Mises kernel to fit
a smooth curve to the data in the 2-dimensional case. This method was taken up by Hall and
Turlach (1999) and Mammen, Marron, Turlach, and Wand (2001), the former dealing with
convex bodies with corners and the latter giving an example to show that the algorithm of
Fisher, Hall, Turlach, and Watson (1997) may fail for a given data set. Further applications
and the 3-dimensional case can be found in papers by Gregor and Rannou (2002), Ikehata
and Ohe (2002), and Karl, Kulkarni, Verghese, and Willsky (1995).

Despite all this work, the convergence of even the most straightforward of the reconstruction
algorithms has apparently never been proved. In Theorem 6.1 below, we provide such a proof
for an algorithm we call Algorithm NoisySupportLSQ, due to Prince and Willsky (1990). By
convergence, we mean that given a suitable sequence of directions, the estimators, convex
polytopes, obtained by running the algorithm with noisy measurements taken in the first k
directions in the sequence, converge in suitable metrics (the L2 and Hausdorff metrics) to the
unknown convex body as k tends to infinity. Suitable sequences of directions are those that
are “evenly spread,” only slightly more restrictive than the obviously necessary condition that
the sequence be dense in the unit sphere.

Moreover, by applying some beautiful and deep results from the theory of empirical pro-
cesses, we are able to provide in Theorem 6.2 estimates of rates of convergence of the estimators
to the unknown convex body. Some considerable technicalities are involved, and some extra
conditions are required, of which however only a rather stronger condition on the sequence of
directions should be regarded as really essential. Convergence rates depend on the dimension
of the unknown convex body; for example, for the L2 metric, the rate is of order k−2/5 in the
2-dimensional case, and k−1/3 in the 3-dimensional case.

Analogous results are obtained for an algorithm, Algorithm NoisyBrightLSQ, essentially
that proposed recently by Gardner and Milanfar (2003), that constructs an approximating
convex polytope to an unknown origin-symmetric convex body from a finite number of noisy
measurements of its brightness function (giving the areas of the shadows of the body on hy-
perplanes). The very existence of such an algorithm is highly nontrivial, due to the extremely
weak data; each measurement is a single scalar that provides no information at all about the
shape of the shadow! Nevertheless, the algorithm has been successfully implemented, even in
3 dimensions. Here we are able to prove, for the first time, convergence (Theorem 7.2), with
estimates of rates of convergence (Theorem 7.6), also for this algorithm. One technical device
that aids in this endeavor is the so-called projection body, whose support function equals the
brightness function of a given convex body. This allows some of our results on reconstruction
from support functions to be transferred to the new reconstruction problem. However, we
require additional deep results on projection bodies (a subclass of the class of zonoids) from
the theory of convex geometry due to Bourgain and Lindenstrauss (1988a) and Campi (1988).
Examples of rates of convergence we obtain, for the Hausdorff metric, are of order k−4/15 in
the 2-dimensional case, and k−1/30 in the 3-dimensional case.
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Most of our results are actually much more informative in that they indicate also how the
convergence depends on the noise level and the scaling of the input body. A discussion and
the results of some Monte Carlo simulations can be found in Section 8.

Many auxiliary results are obtained in the course of proving the convergence of these algo-
rithms, but one is perhaps worth special mention. Roughly speaking, the results we employ
from the theory of empirical processes give rates of convergence of least squares estimators
to an unknown function in terms of the metric entropy of the class of functions involved. In
obtaining our results on reconstruction from support functions it turns out that we therefore
need an estimate of the metric entropy of the class of compact convex subsets of the unit
ball B in n-dimensional space, with the Hausdorff metric. Luckily, the precise order of this,
t−(n−1)/2 for sufficiently small t > 0, was previously established by Bronshtein (1976) (see
Proposition 5.4; it is traditional to talk of ε-entropy rather than t-entropy, but we require ε
for a different purpose in this paper). In the problem of reconstruction from brightness func-
tions, however, we need to know the metric entropy of the class of origin-symmetric zonoids
contained in B. As far as we know, this natural problem has not been addressed before. For
n = 2 it is easy to see that the answer, t−1/2, is unchanged, but in Theorem 7.3, we show that
for fixed n ≥ 3 and any η > 0, the t-entropy of this class is O(t−2(n−1)/(n+2)−η)) for sufficiently
small t > 0. This is somewhat remarkable, since the t-entropy becomes O(t−2) as n tends
to infinity, in complete contrast to the case of general compact convex sets. The hard work
behind Theorem 7.3 is done in highly technical papers of Bourgain and Lindenstrauss (1988b)
and Matoušek (1996) on the approximation of zonoids by zonotopes.

While most of the paper is devoted to reconstruction of convex bodies, Section 9 focuses on
a problem from stereology, that of reconstructing an unknown directional measure of a sta-
tionary fiber process from a finite number of noisy measurements of its rose of intersections. It
turns out that the corresponding algorithm, Algorithm NoisyRoseLSQ, is very closely related
to Algorithm NoisyBrightLSQ, due to the fact that the rose of intersections is the support
function of a projection body. This fact was also used by Kiderlen (2001), where an estima-
tion method similar to Algorithm NoisyRoseLSQ was suggested and analyzed. Convergence
of Algorithm NoisyRoseLSQ was proved by Männle (2002), but also follows easily from our
earlier results (see Proposition 9.1). With suitable extra assumptions we can once again obtain
estimates of rates of convergence of the approximating measures to the unknown directional
measure. These are first given for the Dudley metric in Theorem 9.4, but can easily be con-
verted to rates for the Prohorov metric. For example, for the Prohorov metric, the rate is of
order k−1/20 in the 3-dimensional case.

We thank Chris Eastman, Amyn Poonawala, Greg Richardson, Thomas Riehle, and Chris
Street for writing the computer programs for Monte Carlo simulations. We are also grateful
to Sara van de Geer for a helpful correspondence concerning her work and to the referees for
comments that led to a better presentation of our results.
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2. Definitions, notation, and preliminaries

As usual, Sn−1 denotes the unit sphere, B the unit ball, o the origin, and ‖ · ‖ the norm
in Euclidean n-space Rn. It is assumed throughout that n ≥ 2. A direction is a unit vector,
that is, an element of Sn−1. If u is a direction, then u⊥ is the (n − 1)-dimensional subspace
orthogonal to u. If x, y ∈ Rn, then x · y is the inner product of x and y and [x, y] denotes the
line segment with endpoints x and y.

If A is a set, dim A is its dimension, that is, the dimension of its affine hull, and ∂A is its
boundary. The notation for the usual (orthogonal) projection of A on a subspace S is A|S. A
set is origin symmetric if it is centrally symmetric, with center at the origin.

We write Vk for k-dimensional Lebesgue measure in Rn, where k = 1, . . . , n, and where we
identify Vk with k-dimensional Hausdorff measure. If K is a k-dimensional convex subset of
Rn, then V (K) is its volume Vk(K). Define κn = V (B). The notation dz will always mean
dVk(z) for the appropriate k = 1, . . . , n.

Let Kn be the family of nonempty compact convex subsets of Rn. A set K ∈ Kn is called
a convex body if its interior is nonempty. If K ∈ Kn, then

hK(x) = max{x · y : y ∈ K},
for x ∈ Rn, is its support function and

bK(u) = V (K|u⊥),

for u ∈ Sn−1, its brightness function. Any K ∈ Kn is uniquely determined by its support
function. If K is an origin-symmetric convex body, it is also uniquely determined by its
brightness function. The Hausdorff distance δ(K,L) between two sets K, L ∈ Kn can be
conveniently defined by

δ(K, L) = ‖hK − hL‖∞.

We shall also employ the L2 distance δ2(K, L) defined by

δ2(K, L) = ‖hK − hL‖2.

By Proposition 2.3.1 of Groemer (1996), there is a constant c = c(n) such that if K and L
are contained in RB for some R > 0, then

(1) δ(K, L) ≤ cR(n−1)/(n+1)δ2(K,L)2/(n+1),

which shows (together with a trivial inequality in the converse direction) that both metrics
induce the same topology on Kn.

A zonotope is a vector sum of finitely many line segments. A zonoid is the limit in the
Hausdorff metric of zonotopes. The projection body of a convex body K in Rn is the origin-
symmetric convex body ΠK defined by

hΠK = bK .

An introduction to the theory of projection bodies is provided by Gardner (1995), Chapter 4.
It turns out that projection bodies are precisely the n-dimensional origin-symmetric zonoids.
For this reason we shall denote the set of projection bodies in Rn by Zn.
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The surface area measure S(K, ·) of a convex body K is defined for Borel subsets E of Sn−1

by

(2) S(K, E) = Vn−1

(
g−1(K, E)

)
,

where g−1(K,E) is the set of points in ∂K at which there is an outer unit normal vector
in E. The convex body P is a zonotope if and only if P = ΠK for some origin-symmetric
convex polytope K. In this case, S(K, ·) is a sum of point masses, each located at one of the
directions of the line segments whose sum is P and with weight equal to half the length of
this line segment. This fact will be used in a reconstruction algorithm in Section 7.

A fundamental result is Minkowski’s existence theorem (see, for example, Gardner (1995),
Theorem A.3.2), which says that a finite Borel measure µ in Sn−1 is the surface area measure
of some convex body K in Rn, unique up to translation, if and only if µ is not concentrated
on any great sphere and ∫

Sn−1

u dµ(u) = o.

The treatise of Schneider (1993) is an excellent general reference for all of these topics.
Let U = {u1, . . . , uk} ⊂ Sn−1. The nodes corresponding to U are defined as follows. The

hyperplanes u⊥i , i = 1, . . . , k partition Rn into a finite set of polyhedral cones, which intersect
Sn−1 in a finite set of spherically convex regions. The nodes ±vj ∈ Sn−1, j = 1, . . . , l are
the vertices of these regions. Thus, when n = 2, the nodes are simply the 2k unit vectors
each of which is orthogonal to some ui, i = 1, . . . , k. When n = 3, each vj is of the form
(ui× ui′)/‖ui× ui′‖, where 1 ≤ i < i′ ≤ k and ui 6= ±ui′ . Thus, for n = 3, l ≤ k(k− 1)/2 and
in general, l = O(kn−1). Campi, Colesanti, and Gronchi (1995) proved the following result.

Proposition 2.1. Let K be a convex body in Rn and let U = {u1, . . . , uk} ⊂ Sn−1 span Rn.
Among all convex bodies with the same brightness function values as K in the directions in
U , there is a unique origin-symmetric convex polytope P , of maximal volume and with each
of its facets orthogonal to one of the nodes corresponding to U .

This implies that for any projection body ΠK and any finite set of directions U ⊂ Sn−1

there is a zonotope Z with

hZ(u) = hΠK(u),

for all u ∈ U . Moreover, Z can be written as a sum of line segments, each parallel to some
node corresponding to U .

The following deep result was proved independently by Campi (1988) (for n = 3) and Bour-
gain and Lindenstrauss (1988a). The latter authors state their theorem in terms of a metric
other than the Hausdorff metric, and make an additional assumption on the distance between
the projection bodies. Groemer (1996), Theorem 5.5.7, presents the version below, and his
proof yields the estimate of the constant in (4). This involves some tedious calculations (see
http://www.ac.wwu.edu/~gardner; no attempt was made to obtain the optimal expression).
In (4) and throughout the paper, the “big O” notation is used in the sense of “less than a
constant multiple depending only on n.”
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Proposition 2.2. Let K and L be origin-symmetric convex bodies in Rn, n ≥ 3 such that

r0B ⊂ K,L ⊂ R0B,

for some 0 < r0 < R0. If 0 < a < 2/(n(n + 4)), there is a constant c = c(a, n, r0, R0) such
that

(3) δ(K,L) ≤ c δ2(ΠK, ΠL)a.

Moreover, if 0 < a < 2/(n(n + 4)) is fixed, r0 < 1, and R0 > 1, then

(4) c = O
(
r−2n−1
0 R5

0

)
.

3. Some properties of sets and sequences of unit vectors

In this section we gather together some basic results on sets and sequences of unit vectors
that will be useful in Sections 5 and 7.

If {u1, . . . , uk} is a finite subset of Sn−1, its spread ∆k is defined by

(5) ∆k = max
u∈Sn−1

min
1≤i≤k

‖u− ui‖.

For i = 1, . . . , k, let Ωi be the spherical Voronoi cell

(6) Ωi = {u ∈ Sn−1 : ‖u− ui‖ ≤ ‖u− uj‖ for all 1 ≤ i, j ≤ k}
containing ui. Then ∪k

i=1Ωi = Sn−1, and we define

(7) ωk = max
1≤i≤k

Vn−1(Ωi).

By the definition of spread, {u1, . . . , uk} is a ∆k-net in Sn−1, meaning that for every vector
u in Sn−1, there is an i ∈ {1, . . . , k} such that u is within a distance ∆k of ui. The existence of
ε-nets in Sn−1 with relatively few points is provided by the following well-known result. It can
be proved by induction on n in a constructive way; see, for example, Gardner and Milanfar
(2003), Lemma 7.1.

Proposition 3.1. For each ε > 0 and n ≥ 2, there is an ε-net in Sn−1 containing O(ε1−n)
points.

Now let (ui) be an infinite sequence in Sn−1. We retain the notation ∆k for the spread of
the first k points in the sequence, and similarly for ωk. We need to consider some conditions
on (ui) that are stronger than denseness in Sn−1. To this end, for u ∈ Sn−1 and 0 < t ≤ 2, let

Ct(u) = {v ∈ Sn−1 : ‖u− v‖ < t}
be the open spherical cap with center u and radius t. We call (ui) evenly spread if for all
0 < t < 2, there is a constant c = c(t) > 0 and an N = N(t) such that

(8) |{u1, . . . , uk} ∩ Ct(u)| ≥ ck,

for all u ∈ Sn−1 and k ≥ N .
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The following lemma provides relations between various properties of sequences we need
later. In the Appendix we also indicate how these properties relate to the well-known concept
of a uniformly distributed sequence.

Lemma 3.2. Consider the following properties of a sequence (ui) in Sn−1.

(i) ∆k = O(k−1/(n−1)).
(ii) ωk = O(k−1) and (ui) is dense in Sn−1.
(iii) (ui) is evenly spread.
(iv) (ui) is dense in Sn−1.

Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv), and there are sequences with property (i).

Proof. Assume (i), and let k ∈ N and i ∈ {1, . . . , k}. Let Ωi, 1 ≤ i ≤ k, be the Voronoi cells
corresponding to the set {u1, . . . , uk}, defined by (6). Note that Ωi ⊂ C∆k

(ui) and hence

Vn−1(Ωi) ≤ Vn−1(C∆k
(ui)) ≤ Vn−1(Dk(ui)),

where Dk(ui) is the (n−1)-dimensional ball in the tangent hyperplane to Sn−1 at ui, obtained
by the inverse spherical projection (with center o) of C∆k

(ui). If ∆k <
√

2, then Dk(ui) has
center ui and radius rk = tan(2 arcsin(∆k/2)). Therefore

ωk = max
1≤i≤k

Vn−1(Ωi) ≤ rn−1
k κn−1 = O(∆n−1

k ) = O(k−1).

Since it is clear that (i) also implies that (ui) is dense in Sn−1, (ii) holds.
Suppose that (ii) holds. Fix 0 < t < 2 and u ∈ Sn−1. Cover Sn−1 with finitely many open

caps Cj = Ct/6(vj), 1 ≤ j ≤ m. Since (ui) is dense in Sn−1, there is an N = N(t) ∈ N such
that for k ≥ N , any of these caps contains at least one point of {u1, . . . , uk}. The cap Ct/3(u)
contains at least one Cj, and hence a point ui0 with 1 ≤ i0 ≤ N . Note that N does not depend
on u.

Fix k ≥ N and let Ωi, 1 ≤ i ≤ k, be the Voronoi cells corresponding to the set {u1, . . . , uk}.
If Ωi ∩ int Ct/3(u) 6= ∅, i 6= i0, there must be a point in Ct/3(u) closer to ui than to ui0 . This
implies ui ∈ Ct(u). Consequently,

int Ct/3(u) ⊂ ∪{Ωi : Ωi ∩ int Ct/3(u) 6= ∅} ⊂ ∪{Ωi : ui ∈ Ct(u)}.
Now (ii) implies that there is a c′ = c′(t) such that

Vn−1(Ct/3(u)) ≤
∑

ui∈Ct(u)

Vn−1(Ωi) ≤ ωk|{i : ui ∈ Ct(u)}| ≤ c′

k
|{u1, . . . , uk} ∩ Ct(u)|.

Since the left-hand side of the previous chain of inequalities does not depend on u, this yields
(iii). That (iii) implies (iv) is clear.

To obtain a sequence with property (i), observe that by Proposition 3.1, there is a constant
C such that for each m ∈ N, there is a set Wm of at most C 2m(n−1) unit vectors forming a
2−m-net. Order the elements of each Wm in an arbitrary fashion, and let (ui) be the sequence
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obtained by forming one sequence from these finite sequences W1, W2, and so on in that order.
Let

Nm = C
(
2n−1 + 22(n−1) + · · ·+ 2m(n−1)

)
= C 2n−1

(
2m(n−1) − 1

2n−1 − 1

)
.

Then for all k ≥ Nm, the points u1, . . . , uk form a 2−m-net.
Now suppose that k is the least integer such that the points u1, . . . , uk have spread ∆k,

where

2−m ≤ ∆k < 21−m.

Then

k ≤ Nm = C 2n−1

(
2m(n−1) − 1

2n−1 − 1

)
< C 2n−1

(
2n−1∆1−n

k − 1

2n−1 − 1

)
,

or

∆k ≤
(

k(2n−1 − 1)

C 22(n−1)
+

1

2n−1

)−1/(n−1)

= O
(
k−1/(n−1)

)
.

¤
Let (ui) be a sequence of vectors in Sn−1. For application in Section 7, we need to consider

properties of the “symmetrized” sequence

(9) (u∗i ) = (u1,−u1, u2,−u2, . . . ).

Let

(10) ∆∗
k = max

u∈Sn−1
min
1≤i≤k

min{‖u− ui‖, ‖u− (−ui)‖}

be the symmetrized spread of u1, . . . , uk. Also, let ω∗k be the maximum Vn−1-measure of the
2k spherical Voronoi cells corresponding to the set {±u1,±u2, . . . ,±uk}.

Following Kiderlen (2001), p. 14, we call (ui) asymptotically dense if

lim inf
k→∞

1

k
|{u1, . . . , uk} ∩G| > 0,

for all origin-symmetric open sets G 6= ∅ in Sn−1.

Lemma 3.3. Consider the following properties of a sequence (ui) in Sn−1.

(i) ∆∗
k = O(k−1/(n−1)).

(ii) ω∗k = O(k−1) and (u∗i ) is dense in Sn−1.
(iiia) (u∗i ) is evenly spread.
(iiib) (ui) is asymptotically dense.
(iv) (u∗i ) is dense in Sn−1.

Then (i) ⇒ (ii) ⇒ (iiia) ⇔ (iiib) ⇒ (iv), and there are sequences with property (i).

Proof. The implications (i) ⇒ (ii) ⇒ (iiia) ⇒ (iv) are direct consequences of Lemma 3.2 and
the definition of (u∗i ). The existence statement also follows from this lemma, as any sequence
with ∆k = O(k−1/(n−1)) satisfies ∆∗

k = O(k−1/(n−1)).
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That (iiia) implies (iiib) is trivial. The prove the converse, let Ct(u) be an open cap in Sn−1

of radius t, and cover the compact set Sn−1 with open caps C1, . . . , Cm of radius t/2. Then
Cj ⊂ Ct(u) for some j. If (ui) is asymptotically dense, we can apply the definition of this
property with G = Cj ∪ (−Cj) to conclude that there is a constant c′ > 0 and an N ′ such that

|{u1, . . . , uk} ∩ (Cj ∪ (−Cj))| ≥ c′k,

for all k ≥ N ′ and hence that

|{±u1, . . . ,±uk} ∩ Ct(u)| ≥ c′k,

for all k ≥ N ′. From this, it follows easily that (u∗i ) is evenly spread. ¤

4. Metric entropy and convergence rates for least squares estimators

Let G 6= ∅ be a class of measurable real-valued functions defined on a subset E of Rn.
Suppose that xi ∈ E, i = 1, 2, . . . are fixed, and let Xi, i = 1, 2, . . . be independent random
variables with mean zero and finite variance. If g0 ∈ G, we regard the quantities

yi = g0(xi) + Xi,

i = 1, 2 . . . , as measurements of the unknown function g0. For k ∈ N, any function ĝk ∈ G
satisfying

(11) ĝk = arg min
g∈G

k∑
i=1

(yi − g(xi))
2

is called a least squares estimator for g0 with respect to G, based on measurements at x1, . . . , xk.
(Since ĝk depends on y1, . . . , yk, it also depends on the random variables X1, . . . , Xk, but this
is not made explicit.) If k, G, and x1, . . . , xk are clear from the context, we shall simply refer to
ĝk as a least squares estimator for g0. In the definition of ĝk, xi and yi and are not needed for
i > k, but later we shall take additional measurements into account in order to examine the
asymptotic behavior of ĝk as k increases. In general ĝk need not be unique and the existence
of a least squares estimator has to be assumed. In the applications we have in mind, a least
squares estimator always exists. To provide the necessary measurability for the background
theory to work, a suitable condition can be imposed on the class G. Following Pollard (1984),
p. 196, we call G permissible if it is indexed by a set Y that is an analytic subset of a compact
metric space, such that G = {g(·, y), y ∈ Y }, and g(·, ·) : Rn×Y → R is Ln⊗B(Y )-measurable,
where Ln is the class of Lebesgue measurable sets in Rn and B(Y ) is the class of Borel subsets
of Y . The metric on Y will be important only insofar as it determines B(Y ).

Let (S, d) be a set S equipped with a pseudometric d and let ε > 0. A set U ⊂ S is called
an ε-net if each point in S is within a d–distance at most ε of some point in U .

We can now define metric entropy, a valuable concept introduced by Kolmogorov. Metric
entropy is often also called ε-entropy, but we need to reserve the letter ε for a different purpose.
Accordingly, we define the t-covering number N(t, S, d) of (S, d) as the least cardinality of all
t-nets. In other words, N(t, S, d) is the least number of balls of radius t with respect to d that
cover S. Then H(t, S, d) = log N(t, S, d) is called the t-entropy of (S, d), and we can drop
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the argument d when there is no possibility of confusion. This notion will mainly be used for
subsets of G. For k ∈ N, we define a pseudonorm | · |k on G by

|g|k =

(
1

k

k∑
i=1

g(xi)
2

)1/2

, g ∈ G.

Note that this pseudonorm depends on x1, . . . , xk. For ε > 0, let

Gk(ε, g0) = {g ∈ G : |g − g0|k ≤ ε}.
Then we denote by H(t,Gk(ε, g0)) the t-entropy of Gk(ε, g0) with respect to the pseudometric
generated by the pseudonorm | · |k; again, this depends on x1, . . . , xk. If G is a cone (i.e.,
G = sG for all s > 0), then

(12) H(t,Gk(ε, g0)) = H(st,Gk(sε, sg0)) = H(st, sGk(ε, g0)),

for any s > 0. This follows from the fact that the balls of radius t (with respect to | · |k) with
centers g1, . . . , gm form a minimal cover of Gk(ε, g0) if and only if the balls of radius st with
centers sg1, . . . , sgm form a minimal cover of Gk(sε, sg0). A local entropy integral Jk(ε,G) can
be defined for a > 0 and 0 < ε < 26a by

(13) Jk(ε,G) = max

{∫ ε

ε2/(26a)

H
(
t,Gk(ε, g0)

)1/2
dt, ε

}
.

Note that this integral depends on g0, a, and x1, . . . , xk, although this is not explicit in the
notation.

To state the principal technical result, a little more terminology is needed. The random
variables Xi are called uniformly sub-Gaussian if there are constants A and τ such that for
i = 1, 2, . . . , we have

(14) A2
(
E

[
e|Xi|2/A2

]
− 1

)
≤ τ 2.

Note that if Xi is a normal N(0, σ2) random variable for i = 1, 2, . . . , then this condition is
satisfied when A = τ = 2σ.

The following result is due to van de Geer (2000), Theorem 9.1 (see also van de Geer (1990)).

Proposition 4.1. Let a > 0 and let Xi, i = 1, 2, . . . be uniformly sub-Gaussian independent
random variables satisfying (14), each with mean zero. Let G be a permissible class of real-
valued functions on a subset E of Rn, let g0 ∈ G, and let (xi) be a sequence in E. Let Jk(ε,G)
be defined by (13), and suppose that Ψ is a function with Ψ(ε) ≥ Jk(ε,G) for all k ∈ N and
such that Ψ(ε)/ε2 is decreasing for 0 < ε < 26a. Then there is a constant c = c(A, τ) such

that for any k ∈ N and any εk > 0 with
√

kε2
k ≥ cΨ(εk) we have

(15) Pr (|g0 − ĝk|k > εk) ≤ ce−kε2
k/c2 + Pr

(
1

k

k∑
i=1

X2
i > a2

)
,

for any least squares estimator ĝk of g0 with respect to G based on measurements at x1, . . . , xk.
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It is crucial that the constant c depends neither on a nor on k. In Theorem 9.1 of van de
Geer (2000), the fact that c is independent of k is not explicitly stated and requires some
explanation. In our notation, the proof of Theorem 9.1 of van de Geer (2000) arrives at the

inequality
√

kεk ≥ 16CΨ(εk), where C is a constant independent of k. The assumptions and
(13) yield

√
k ≥ 16C

Ψ(εk)

ε2
k

≥ 16C
Jk(εk,G)

ε2
k

≥ 16C

εk

,

or
√

kεk ≥ 16C. This allows the finite sum on the last line of p. 149 of van de Geer (2000)
to be bounded above by a geometric series whose sum depends on k only in the required
exponential form. (See the proof of Lemma 3.2 of van de Geer (2000) for a similar argument.)

The following result is implicit in pp. 187–8 of van de Geer (2000). A proof is provided for
the convenience of the reader and because we need some details about the constants involved.

Corollary 4.2. Suppose that the assumptions on the random variables Xi and class G in
Proposition 4.1 hold. For all k ∈ N, let ĝk be a least squares estimator of g0 with respect to G,
based on measurements at x1, . . . , xk. If there are positive constants α, t0, and M such that

(16) H(t,Gk(ε0, g0)) ≤ M2t−α,

for all k ∈ N, 0 < t ≤ t0, and ε0 = 213/2τ , then, almost surely, there are constants C =
C(A, τ, α) and N = N(A, τ, α, t0,M) such that

(17) |g0 − ĝk|k ≤




CM2/(2+α)k−1/(2+α) if α < 2,
Ck−1/4 log k if α = 2, and
CM1/αk−1/(2α) if α > 2,

for k ≥ N .

Proof. Let Jk(ε,G) be defined by (13) with a =
√

2τ . We may suppose that τ > 0 and
therefore that a > 0. As H(t,Gk(ε, g0)) is an increasing function of ε (with t fixed), (16) holds
when ε0 is replaced by any 0 < ε ≤ 26a = ε0.

Consider first the case α < 2 and let 0 < ε < 26a. For 0 < ε < t0, we have
∫ ε

ε2/(26a)

H(t,Gk(ε, g0))
1/2 dt ≤ 2M

2− α

(
ε1−α/2 −

(
ε2

26a

)1−α/2
)

.

As H(t,Gk(ε, g0)) is a decreasing function of t (with ε fixed), ε ≥ t0 implies
∫ ε

ε2/(26a)

H(t,Gk(ε, g0))
1/2 dt =

∫ t0

ε2/(26a)

H(t,Gk(ε, g0))
1/2 dt +

∫ ε

t0

H(t,Gk(ε, g0))
1/2 dt

≤ 2M

2− α
t
1−α/2
0 + H(t0,Gk(ε, g0))

1/2(ε− t0).

Let

(18) Ψ(ε) =

{
max

{
2M
2−α

ε1−α/2, ε
}

if 0 < ε < t0,

max
{

2M
2−α

t
1−α/2
0 + Mt

−α/2
0 (ε− t0), ε

}
if ε ≥ t0.
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Then Ψ(ε) ≥ J(ε,G) and by (18), Ψ(ε)/ε2 is a decreasing function of ε > 0. Suppose that
c > 0 and let εk = A1k

−1/(2+α). If both

(19) A1 =

(
2Mc

2− α

)2/(2+α)

and

(20) k > max

{(
c

A1

)2(2+α)/α

,

(
A1

t0

)2+α
}

hold, then one can check that εk < t0 and (using this also) that
√

kε2
k ≥ cΨ(εk). As noted by

van de Geer (2000), p. 150, (14) implies that

Pr

(
1

k

k∑
i=1

X2
i > 2τ 2

)
≤ e−kτ2/(12A2).

Thus, (15) yields

(21) Pr
(|g0 − ĝk|k > A1k

−1/(2+α)
) ≤ ce−A2

1kα/(2+α)/c2 + e−kτ2/(12A2),

provided (19) and (20) hold. The sum over k of the right-hand side of (21) converges, so by
the Borel-Cantelli lemma we have, almost surely,

|g0 − ĝk|k ≤ A1k
−1/(2+α) = CM2/(2+α)k−1/(2+α),

say, for sufficiently large k. Therefore (17) is true when α < 2.
The argument when α ≥ 2 is similar; we omit the details. If α > 2, we take

Ψ(ε) =





max

{
2M
α−2

(
ε2

26a

)1−α/2

, ε

}
if 0 < ε < t0,

max

{
2M
α−2

(
t20

26a

)1−α/2

+ Mt
−α/2
0 (ε− t0), ε

}
if ε ≥ t0,

and εk = A2k
−1/2α for a suitable constant A2. If α = 2, we can take

Ψ(ε) =

{
max {M(log(26a)− log ε), ε} if 0 < ε < t0,
max {M(log(26a)− log t0 + (ε− t0)/t0), ε} if ε ≥ t0,

and εk = A3k
−1/4 log k for a suitable constant A3. In both cases it can be checked that εk < t0

and then that
√

kε2
k ≥ cΨ(εk) when k is sufficiently large. (The case α = 2 is qualitatively

different, as A3 can be chosen independent of M .) ¤
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5. Least squares estimation of support functions

Suppose that K is an unknown convex body in Rn, and (ui) is a sequence in Sn−1. For
k ∈ N, the support function hK of K is measured at u1, u2, . . . , uk. The measurements

(22) yi = hK(ui) + Xi,

i = 1, 2, . . . , k are noisy, the Xi’s being independent random variables with zero mean and
finite variance. We want to find a convex body with the property that its support function
values at u1, . . . , uk best approximate the measurements y1, . . . , yk. In order to apply the
results of the previous section, we let E = Sn−1 and

G = {hL : L ∈ Kn},
the class of support functions, throughout this section.

Lemma 5.1. The class G is permissible.

Proof. Referring to the above definition of the term “permissible,” the index set Y = Kn is
a subset of the family Fn of all closed subsets of Rn. The latter, endowed with the hit-and-
miss topology, is a compact metrizable space; see, for example, Schneider and Weil (2000),
Satz 1.1.1. By Satz 1.3.2 of Schneider and Weil (2000), Y is a Borel set in Fn, so it is analytic
in Fn. Although the induced topology on Y as a subset of Fn is coarser than the topology
induced by the Hausdorff metric, the respective families of Borel sets coincide; see Schneider
and Weil (2000), Satz 1.3.2. The mapping (K, u) 7→ hK(u) is continuous with respect to both
topologies, so the parametrization mapping is Borel measurable. ¤

Fix k ∈ N and K ∈ Kn. In accordance with the notation of the previous section (see (11)),

we let (ĥK)k be a least squares estimator for hK with respect to G based on measurements
at u1, . . . , uk, so that hK now plays the role of the function g0. As G is a closed cone in the
usual Banach space of continuous functions on the sphere (and the objective function in (11)
is continuous on this space), a least squares estimator always exists. For h : Sn−1 → R, the
pseudonorm |h|k is now given by

(23) |h|k =

(
1

k

k∑
i=1

h(ui)
2

)1/2

.

The following lemma provides an upper bound for the L2 distance between two convex
bodies L and M contained in a ball SB in terms of the pseudometric |hL − hM |k.
Lemma 5.2. Let S > 0 and let L and M be convex bodies in Rn contained in SB. Let
{u1, . . . , uk} be a subset of Sn−1. Then

(24) δ2(L,M) ≤ (kωk)
1/2 (|hL − hM |k + 2∆kS) ,

where ∆k and ωk are defined by (5) and (7), respectively.
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Proof. As in Section 3, denote the Voronoi cells corresponding to {u1, . . . , uk} by Ωi, 1 ≤ i ≤ k.
If u ∈ Ωi, we have ‖u− ui‖ ≤ ∆k and hence

hL(u) ≤ hL(ui) + hL(u− ui) ≤ hL(ui) + ‖u− ui‖hL

(
u− ui

‖u− ui‖
)
≤ hL(ui) + ∆kS.

Similarly,

hM(ui) ≤ hM(u) + hM(ui − u) ≤ hM(u) + ∆kS.

Therefore

hL(u)− hM(u) ≤ hL(ui)− hM(ui) + 2∆kS,

and interchanging L and M , we obtain

|hL(u)− hM(u)| ≤ |hL(ui)− hM(ui)|+ 2∆kS.

Therefore

δ2(L, M)2 =

∫

Sn−1

(hL(u)− hM(u))2 du

≤
k∑

i=1

∫

Ωi

(|hL(ui)− hM(ui)|+ 2∆kS)2 du

≤ ωk

k∑
i=1

(|hL(ui)− hM(ui)|+ 2∆kS)2

≤ ωk




(
k∑

i=1

(hL(ui)− hM(ui))
2

)1/2

+

(
k∑

i=1

(2∆kS)2

)1/2



2

= kωk (|hL − hM |k + 2∆kS)2 .

¤

We shall also need the next lemma, which under the assumption K ⊂ RB and a mild condi-
tion on the sequence (ui), yields the radius of a ball containing L in terms of the pseudometric
|hK − hL|k.
Lemma 5.3. Let K and L be convex bodies in Rn. Suppose that K ⊂ RB for some R > 0, and
that (ui) is an evenly spread sequence in Sn−1. Then there are constants C0 = C0((ui)) > 0
and N0 = N0((ui)) ∈ N such that

L ⊂ (C0 |hK − hL|k + 2R) B,

for all k ≥ N0.

Proof. Fix k and choose xk ∈ L, where we may assume that ‖xk‖ > 2R since otherwise
L ⊂ 2RB. Then hL(u) ≥ xk · u for all u ∈ Sn−1. Let vk = xk/‖xk‖. Choose t0 > 0 small



CONVERGENCE OF RECONSTRUCTION ALGORITHMS 15

enough that for each u ∈ Sn−1 and any v, w ∈ Ct0(u), we have v · w ≥ 1/2. (Of course, t0
does not depend on k.) If ui ∈ Ct0(vk), then

|hK(ui)− hL(ui)| ≥ xk · ui −R >
‖xk‖

2
−R > 0.

Therefore

|hK − hL|2k ≥ 1

k

∑

ui∈Ct0 (vk)

|hK(ui)− hL(ui)|2

≥
(‖xk‖

2
−R

)2
1

k
|{u1, . . . , uk} ∩ Ct0(vk)|

≥ c

(‖xk‖
2

−R

)2

,

for some c > 0 and all k ≥ N , say, because (ui) is evenly spread. (Note that c and N depend
only on (ui).) From this we obtain

‖xk‖ ≤ 2

(
1√
c
|hK − hL|k + R

)
,

for k ≥ N , and the result follows. ¤

The following result is due to Bronshtein (1976). His definition of entropy uses log2 instead
of the natural logarithm, requiring an extra constant factor in the lower bound.

Proposition 5.4. Let Kn(B) denote the space of compact convex subsets of the unit ball B
in Rn, endowed with the Hausdorff metric. Then for 0 < t < 10−12/(n − 1), the t-entropy
H(t,Kn(B)) of Kn(B) satisfies

(25)
κn−1 log 2

8n−1(n− 1)
t−(n−1)/2 ≤ H(t,Kn(B)) ≤ (log 12)106n5/2t−(n−1)/2.

Let ε and t be positive numbers and let k ∈ N. As before, let

Gk(ε, hK) = {hL ∈ G : |hK − hL|k ≤ ε},
and let

H(t,Gk(ε, hK)) = H(t,Gk(ε, hK), | · |k)
be the t-entropy of Gk(ε, hK) with respect to the pseudometric generated by | · |k.
Corollary 5.5. Let (ui) be an evenly spread sequence in Sn−1 and let K be a convex body in Rn

with K ⊂ RB for some R > 0. Then there are constants t1 = t1(n, (ui)) and C1 = C1(n, (ui))
such that

(26) H(t,Gk(ε, hK)) ≤ C1R
(n−1)/2t−(n−1)/2,

for all k ∈ N, 0 < ε ≤ R, and 0 < t ≤ Rt1.
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Proof. We first make the following claim: There is a constant s0 = s0(n, (ui)) > 0 such that
for all k ∈ N and hL ∈ Gk(ε, hK), there is an L′ ∈ (R/s0)Kn(B) with hL′(ui) = hL(ui), for
i = 1, . . . , k.

The claim will be proved later. Assuming it is true, we observe that if hL ∈ (s0/R)Gk(ε, hK),
then there is an L′ ∈ Kn(B) such that |hL − hM |k = |hL′ − hM |k for any compact convex set
M in Rn. It follows from this and (12) with s = s0/R that

H(t,Gk(ε, hK)) = H(s0t/R, (s0/R)Gk(ε, hK)) ≤ H(s0t/R, {hL′ : L′ ∈ Kn(B)}, | · |k).
Since

|hL − hM |k ≤ ‖hL − hM‖∞ = δ(L,M),

for any two compact convex subsets L and M in Rn, we have

H(t,Gk(ε, hK)) ≤ H(s0t/R, {hL′ : L′ ∈ Kn(B)}, | · |k) ≤ H(s0t/R,Kn(B)).

Now (26) is an immediate consequence of (25) if we put t1 = 2 · 10−12/((n − 1)s0) and
C1 = (log 12)106n5/2(2s0)

(n−1)/2.
It remains to prove the claim. Let hL ∈ Gk(ε, hK). By Lemma 5.3, there are constants

C0 = C0((ui)) and N0 = N0((ui)) such that if k ≥ N0, then

(27) L ⊂ (C0ε + 2R)B ⊂ (C0 + 2)RB.

For such k, we let L′ = L. Now let k ≤ N0. Since hL ∈ Gk(ε, hK), we have

(28) |hL(ui)|2 ≤ k|hL|2k ≤ N0(ε + |hK |k)2 ≤ 4N0R
2,

for i = 1, . . . , k. Let I ⊂ {1, . . . , N0} be nonempty, and consider the continuous function fI

on Sn−1 defined by

fI(u) =
∑
i∈I

|u · ui|.

For u in the span of {ui : i ∈ I}, fI(u) > 0. Therefore we can choose a0 = a0(n, (ui)) > 0
such that for any such I and u in the span of {ui : i ∈ I}, fI(u) ≥ a0.

Suppose that {u1, . . . , uk} spans Rn. The polyhedron P =
⋂k

i=1{x ∈ Rn : x · ui ≤ hL(ui)}
satisfies hP (ui) = hL(ui) for i = 1, . . . , k, but may be unbounded. Let L′ = conv {x1, . . . , xm},
where x1, . . . , xm are the vertices of P . Then L′ is bounded and satisfies hL′(ui) = hL(ui) for
i = 1, . . . , k. Any vertex xj of P is an intersection of n hyperplanes with linearly independent
normals ui1 , . . . , uin , say. Using (28) with L replaced by L′, we obtain, for any xj 6= o,

‖xj‖a0 ≤ ‖xj‖
n∑

p=1

∣∣∣∣
xj

‖xj‖ · uip

∣∣∣∣ =
n∑

p=1

∣∣xj · uip

∣∣ ≤
n∑

p=1

hL′(uip) ≤ 2n
√

N0R.

Thus L′ ⊂ (2n
√

N0/a0)RB.
If the span of {u1, . . . , uk} is a proper subspace S of Rn, the above argument can be applied

to L|S regarded as a compact convex subset of S to obtain the same inclusion. In view of
(27), which holds for all k ≥ N0 with L replaced by L′, we conclude that L′ ⊂ (R/s0)B for
all k ∈ N, where s0 = min{1/(C0 + 2), a0/(2n

√
N0)} depends only on n and (ui). ¤
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Theorem 5.6. Let (ui) be an evenly spread sequence in Sn−1 and let Xi, i = 1, 2 . . . be
uniformly sub-Gaussian independent random variables satisfying (14), each with mean zero.

Let K be a convex body in Rn with K ⊂ RB, where R ≥ 213/2τ , and for k ∈ N, let (ĥK)k be a
least squares estimator of hK with respect to G, based on measurements at u1, . . . , uk. Then,
almost surely, there are constants C2 = C2(A, τ, n) and N2 = N2(A, τ, n, R, (ui)) such that

(29)
∣∣∣hK − (ĥK)k

∣∣∣
k
≤





C2R
(n−1)/(n+3)k−2/(n+3) if n = 2, 3, 4,

C2k
−1/4 log k if n = 5, and

C2R
1/2k−1/(n−1) if n ≥ 6,

for k ≥ N2.

Proof. Let ε0 = 213/2τ . Since 0 < ε0 ≤ R, Corollary 5.5 yields

(30) H(t,Gk(ε0, hK)) ≤ C1R
(n−1)/2t−(n−1)/2,

for k ∈ N and 0 < t ≤ Rt1. By (30), we may apply Corollary 4.2 with α = (n−1)/2, t0 = Rt1,
and

M2 = C1R
(n−1)/2,

to conclude that (17) holds, almost surely, with M as above and C = C(A, τ, α) = C2(A, τ, n)
and N = N(A, τ, α, t0,M) = N2(A, τ, n, R, (ui)). ¤
Corollary 5.7. Let (ui) be an evenly spread sequence in Sn−1 and let Xi, i = 1, 2 . . . be
independent normal N(0, σ2) random variables. Let K be a convex body in Rn with K ⊂ RB,

where R ≥ σ15/2, and for k ∈ N, let (ĥK)k be a least squares estimator of hK with respect to
G, based on measurements at u1, . . . , uk. Then, almost surely, there are constants C3 = C3(n)
and N3 = N3(σ, n, R, (ui)) such that

(31)
∣∣∣hK − (ĥK)k

∣∣∣
k
≤





C3 σ4/(n+3)R(n−1)/(n+3)k−2/(n+3) if n = 2, 3, 4,
C3 σ k−1/4 log k if n = 5, and
C3 σ1/2R1/2k−1/(n−1) if n ≥ 6,

for k ≥ N3.

Proof. As was noted earlier, we may take A = τ = 2σ in Theorem 5.6 and conclude that

if K ⊂ RB and R ≥ σ15/2 then, almost surely, the least squares estimators (ĥK)k for hK

with respect to G satisfy (29), where the dependence of C2 and N2 on A and τ is replaced by
dependence on σ. Instead we now use scaled measurements

λyi = λhK(ui) + λXi

with some λ > 0, to estimate the support function hλK = λhK of the scaled convex body λK.

Then λ(ĥK)k is a least squares estimator for hλK . Also, λXi, i = 1, 2, . . . are independent
normal N(0, (λσ)2) random variables. Replacing K, R, and σ by λK, λR, and λσ, respectively,
we conclude that, almost surely, there are constants c0 = c0(λσ, n) and n0 = n0(λσ, n, λR, (ui))
such that

(32)
∣∣∣λhK − λ(ĥK)k

∣∣∣
k
≤ c0(λR)bnfn(k),
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for k ≥ n0, where Rbn and fn(k) are the functions of R and k, respectively, in (29). When
λ = 1/σ, (32) becomes

(33)
∣∣∣hK − (ĥK)k

∣∣∣
k
≤ C3σ

1−bnRbnfn(k),

where C3 = C3(n) and k ≥ N3 = N3(σ, n, R, (ui)). Substituting bn and fn from (29) into (33),
we arrive at (31). ¤

6. Convergence of the Prince-Willsky algorithm

Let u1, . . . , uk be fixed vectors in Sn−1 whose positive hull is Rn. We say that the nonnegative
real numbers h1, . . . , hk are consistent if there is a compact convex set L in Rn such that
hL(ui) = hi, i = 1, . . . , k. If h1, . . . , hk are consistent, there will be many such sets L; let
P (h1, . . . , hk) denote the one that is the polytope defined by

(34) P (h1, . . . , hk) = ∩k
i=1{x ∈ Rn : x · ui ≤ hi}.

For n = 2 and vectors u1, . . . , uk equally spaced in S1, the following algorithm was proposed
and implemented by Prince and Willsky (1990).

Algorithm NoisySupportLSQ

Input: Natural numbers n ≥ 2 and k ≥ n+1; vectors ui ∈ Sn−1, i = 1, . . . , k whose positive
hull is Rn; noisy support function measurements

yi = hK(ui) + Xi,

i = 1, . . . , k of an unknown convex body K in Rn, where the Xi’s are independent normal
N(0, σ2) random variables.

Task: Construct a convex polytope P̂k in Rn that approximates K, with facet outer normals
belonging to the set {ui : i = 1, . . . , k}.

Action: Solve the following constrained linear least squares problem (LLS1):

min
h1,...,hk

k∑
i=1

(yi − hi)
2,(35)

subject to h1, . . . , hk are consistent.(36)

Let ĥ1, . . . , ĥk be a solution of (LLS1) and let P̂k = P (ĥ1, . . . , ĥk). ¤
Naturally any implementation of Algorithm NoisySupportLSQ involves making explicit the

constraint (36). Although we do not need to address this problem for our purposes, a few
remarks are appropriate. For n = 2, this was done by Prince and Willsky (1990) for vectors
u1, . . . , uk equally spaced in S1, and by Lele, Kulkarni, and Willsky (1992) for arbitrary vectors
u1, . . . , uk, by means of an inequality constraint of the form Ah ≤ 0, where h = (h1, . . . , hk)
and A is a certain matrix. For general n this is more difficult, and was studied by Karl,
Kulkarni, Verghese, and Willsky (1995). (In these papers there is no mention of Rademacher’s
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condition for consistency when n = 2, or of Firey’s extension (see Schneider (1993), p. 47)
of Rademacher’s condition to n ≥ 2.) The authors of Karl, Kulkarni, Verghese, and Willsky
(1995) did not implement the algorithm for n ≥ 3; an implementation for n = 3 and certain
special sets of directions was carried out by Gregor and Rannou (2002).

If the positive hull of {u1, . . . , uk} is not Rn, then (34) could still be considered as output
of the Algorithm NoisySupportLSQ, if consistency of h1, . . . , hk is extended to closed convex
sets which may be unbounded. We choose not to do this, however. Indeed, if (ui) is a dense
sequence of vectors in Sn−1, then for sufficiently large k, the positive hull of u1, . . . , uk is Rn

and in this case, Algorithm NoisySupportLSQ produces a polytope P̂k as output. We now
establish conditions under which P̂k converges, almost surely, to K as k →∞. Of course, the
denseness of (ui) is a necessary condition for such convergence.

The following theorem establishes the strong consistency of Algorithm NoisySupportLSQ
when (ui) is evenly spread.

Theorem 6.1. Let K be a convex body in Rn and let (ui) be an evenly spread sequence in Sn−1.

If P̂k is an output from Algorithm NoisySupportLSQ as stated above, then, almost surely,

lim
k→∞

δ(K, P̂k) = 0.

Proof. Theorem 5.6 and (ĥK)k = hP̂k
imply that, almost surely, we have

(37) lim
k→∞

∣∣hK − hP̂k

∣∣
k

= 0.

Fix a realization for which (37) holds.

By Lemma 5.3, there is an S > 0 such that P̂k ⊂ SB for all k. According to Blaschke’s
selection theorem, the set {P̂1, P̂2, . . .} is relatively compact in the space of convex bodies in

Rn with the Hausdorff metric. To prove limk→∞ P̂k = K, it is therefore enough to show that
K is the only accumulation point of (P̂k).

Let K̃ be an arbitrary accumulation point of this sequence. Then a subsequence of
(
hP̂k

)
converges uniformly to hK̃ . This and (37) can be applied to the right hand side of

|hK − hK̃ |k ≤
∣∣hK − hP̂k

∣∣
k
+

∣∣hP̂k
− hK̃

∣∣
k

to show that a subsequence
(|hK − hK̃ |k′

)
converges to 0. For each k′ in this subsequence,

|hK − hK̃ |k′ = ‖hK − hK̃‖L2(µk′ )

is the L2 norm of hK − hK̃ with respect to the probability measure µk′ that assigns a mass
1/k′ to each of the points u1, . . . , uk′ . As the set of probability measures in Sn−1 is weakly
compact, there is a subsequence (µk′′) of (µk′) that converges weakly to a probability measure
µ. Using the continuity of support functions, we conclude that

0 = lim
k→∞

‖hK − hK̃‖L2(µk′′ ) = ‖hK − hK̃‖L2(µ).

We claim that since (ui) is evenly spread, the support of µ is Sn−1; this will then imply
hK = hK̃ and hence K = K̃. To prove the claim, suppose that G is a nonempty open set
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in Sn−1 such that µ(G) = 0. Choose an open cap Ct(u) ⊂ G, t > 0, and a nonnegative
continuous real-valued function f on Sn−1 with support contained in G and such that f ≥ 1
on Ct(u). Then the fact that (ui) is evenly spread implies that

0 < lim inf
k→∞

∫

Sn−1

1Ct(u)(v) dµk(v) ≤ lim
k→∞

∫

Sn−1

f(v) dµk(v)

=

∫

Sn−1

f(v) dµ(v) ≤ ‖f‖∞µ(G) = 0,

where 1Ct(u) denotes the characteristic function of Ct(u). This contradiction completes the
proof. ¤

The conclusion of the following theorem is stronger than that of Theorem 6.1 since it
provides convergence rates. However, the hypothesis on the sequence (ui) is also stronger; see
Lemma 3.2, which also guarantees the existence of suitable sequences (ui).

Theorem 6.2. Let σ > 0 and let K be a convex body in Rn such that K ⊂ RB for some
R ≥ 215/2σ. Let (ui) be a sequence in Sn−1 with ∆k = O(k−1/(n−1)). If P̂k is an output
from Algorithm NoisySupportLSQ as stated above, then, almost surely, there are constants
C4 = C4(n, (ui)) and N4 = N4(σ, n, R, (ui)) such that

(38) δ2(K, P̂k) ≤




C4 σ4/(n+3)R(n−1)/(n+3)k−2/(n+3) if n = 2, 3, 4,
C4 σ k−1/4 log k if n = 5, and
C4

(
R + (σR)1/2

)
k−1/(n−1) if n ≥ 6,

for k ≥ N4.
Also, there are constants C5 = C5(n, (ui)) and N5 = N5(σ, n, R, (ui)) such that

(39) δ(K, P̂k) ≤





C5 σ
8

(n+1)(n+3) R
(n−1)(n+5)
(n+1)(n+3) k−

4
(n+1)(n+3) if n = 2, 3, 4,

C5 σ1/3 R2/3k−1/12(log k)1/3 if n = 5, and

C5

(
R + σ1/(n+1)Rn/(n+1)

)
k−2/(n2−1) if n ≥ 6,

for k ≥ N5.

Proof. By Lemma 5.3, we can apply Lemma 5.2 with L = K, M = P̂k, and S = C0|hK −
hP̂k

|k + 2R to obtain

(40) δ2(K, P̂k) ≤ (kωk)
1/2

(
4∆kR + (2∆kC0 + 1) |hK − hP̂k

|k
)
,

for all k ≥ N0. By Lemma 3.2, kωk = O(1) and we also have (ĥK)k = hP̂k
. The various

estimates for δ2(K, P̂k) now follow from the corresponding estimates for |hK − (ĥK)k|k in
Corollary 5.7.

To obtain the estimates for δ(K, P̂k), we combine those just found and the relation (1) that
yields

δ(K, P̂k) ≤ cS(n−1)/(n+1)δ2(K, P̂k)
2/(n+1),

where S = C0|hK − hP̂k
|k + 2R, for all k ≥ N0. ¤
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7. Reconstruction from brightness function measurements

Suppose that K is an unknown origin-symmetric convex body in Rn, and (ui) is a sequence
of directions in Sn−1. For k ∈ N, the brightness function bK of K is measured at u1, u2, . . . , uk.
The measurements

(41) yi = bK(ui) + Xi,

i = 1, 2, . . . , k are noisy, the Xi’s being independent random variables with zero mean and
finite variance. We want to find an origin-symmetric convex body with the property that its
brightness function values at u1, . . . , uk best approximate the measurements y1, . . . , yk.

The following algorithm was proposed by Gardner and Milanfar (2001). Since it is conve-
nient for us to describe it in somewhat different language, we briefly explain how it works in
the case of exact measurements, a situation analyzed in detail by Gardner and Milanfar (2003).
The algorithm proceeds in two phases, motivated by the connection between zonoids, projec-
tion bodies, and surface area measures outlined in Section 2. In the first phase, a constrained
least squares problem is solved to find a zonotope Z with hZ(ui) = bK(ui), i = 1, . . . , k.
This zonotope is the projection body of a polytope, whose surface area measure can easily be
calculated from Z. The second phase reconstructs the polytope from this known surface area
measure.

Algorithm NoisyBrightLSQ

Input: Natural numbers n ≥ 2 and k; vectors ui ∈ Sn−1, i = 1, . . . , k that span Rn; noisy
brightness function measurements

yi = bK(ui) + Xi,

i = 1, . . . , k of an unknown origin-symmetric convex body K in Rn, where the Xi’s are
independent normal N(0, σ2) random variables.

Task: Construct a convex polytope Q̂k in Rn that approximates K.

Action:

Phase I: Find a zonotope Ẑk ∈ Zn that solves the following least squares problem:

(42) min
Z∈Zn

k∑
i=1

(yi − hZ(ui))
2 .

Calculate the (finitely supported) surface area measure S(Q̂k, ·) of the origin-symmetric poly-

tope Q̂k satisfying

(43) Ẑk = ΠQ̂k.

Phase II: Reconstruct Q̂k from S(Q̂k, ·) (or directly from Ẑk, if possible). ¤
It was observed by Gardner and Milanfar (2003) that the remark after Proposition 2.1

can be used in Phase I; this shows that a zonotope Ẑk solving (42) exists. Moreover, as
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Ẑk can be assumed to be a sum of line segments, each parallel to a node corresponding to
U = {u1, . . . , uk}, only the length of these line segments has to be determined. (Note, however,
that this restriction on the direction of the line segments is not required in (42).) This turns
(42) into a finite-dimensional quadratic program which can be solved using standard software.
When n = 2, Phase II is simple (see Gardner and Milanfar (2003), p. 284, but note also the
statistically improved method proposed by Poonawala, Milanfar, and Gardner (2005)). For
n ≥ 3, Phase II is highly nontrivial, but can be performed by means of the previously known
algorithm MinkData (see Gardner and Milanfar (2003) for references).

When the brightness function measurements are exact, it was proved by Gardner and Mi-
lanfar (2003), Theorem 6.1, that if (ui) is dense in Sn−1, then the outputs Q̂k (corresponding
to the first k directions in (ui)) converge to K, as k → ∞. For a convergence proof that
applies to noisy measurements, we can apply our results from Section 5. We begin with a
suitable form of Lemma 5.3. Recall the definition (9) of the symmetrized sequence (u∗i ).

Lemma 7.1. Let K and L be origin-symmetric convex bodies in Rn. Suppose that K ⊂ RB
for some R > 0, and that (ui) is a sequence in Sn−1 such that (u∗i ) is evenly spread. Then
there are constants C∗

0 = C∗
0((ui)) > 0 and N∗

0 = N∗
0 ((ui)) ∈ N such that

L ⊂ (C∗
0 |hK − hL|k + 2R) B,

for all k ≥ N∗
0 .

Proof. This follows easily from Lemma 5.3, if (ui) and k are replaced by (u∗i ) and 2k, respec-
tively, and

1

2k

2k∑
i=1

(hK(u∗i )− hL(u∗i ))
2 = |hK − hL|2k

is taken into account. ¤
The next theorem gives the strong consistency of Algorithm NoisyBrightLSQ when (u∗i ) is

evenly spread.

Theorem 7.2. Let K be a convex body in Rn and let (ui) be a sequence in Sn−1 such that (u∗i )
is evenly spread. If Q̂k is an output from Algorithm NoisyBrightLSQ as stated above, then,
almost surely,

(44) lim
k→∞

δ(K, Q̂k) = 0.

Proof. Choose 0 < r < R such that rB ⊂ K ⊂ RB. Then Π(rB) ⊂ ΠK ⊂ Π(RB), so

(45) sB ⊂ ΠK ⊂ tB,

where s = κn−1r
n−1 and t = κn−1R

n−1. Theorem 5.6 and (ĥΠK)k = hẐk
imply that, almost

surely, we have

(46) lim
k→∞

∣∣hΠK − hẐk

∣∣
k

= 0.

Fix a realization for which (46) holds.
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By (45), (46), and Lemma 7.1 with K, L, and R replaced by ΠK, Ẑk, and κn−1R
n−1,

respectively, there is an S > 0 such that Ẑk ⊂ SB holds for all k. We can now apply
Blaschke’s selection theorem and the argument used in the proof of Theorem 6.1 to conclude
that

(47) lim
k→∞

δ(ΠK, Ẑk) = 0,

as (u∗i ) is evenly spread in Sn−1.

When n = 2, it is easy to see that ΠK and ΠQ̂k are rotations about the origin by π/2 of

2K and 2Q̂k, respectively. (See, for example, Gardner (1995), Theorem 4.1.4.) Therefore (44)
follows immediately from (47).

Suppose that n ≥ 3. By (45) and (47), we have

(48)
s

2
B ⊂ Ẑk = ΠQ̂k ⊂ 3

2
tB,

for sufficiently large k. (Note that the fact that Ẑk is n-dimensional for sufficiently large k

guarantees the existence of Q̂k.) Exactly the same argument as in the proof of Lemma 4.2 of
Gardner and Milanfar (2003) (beginning with formula (16) in that paper) leads from (48) to

(49) r0B ⊂ Q̂k ⊂ R0B,

for sufficiently large k, where

(50) R0 =
3nκn

κn−1

(
3

2

)1/(n−1)
Rn

rn−1
and r0 =

κn−1r
n−1

2nRn−2
0

.

Since rB ⊂ K ⊂ RB implies r0B ⊂ K ⊂ R0B, we can apply (47) and Proposition 2.2 with

L = Q̂k to obtain (44). ¤

The results from Section 5 also give rates of convergence. However, we are able to do better,
at least for 3 ≤ n ≤ 5, by replacing the class of regression functions by the smaller family

G̃ = {hZ : Z ∈ Zn}.
Note that this class is permissible, since it is easy to check that Zn is a Borel set in Kn.

In the plane, the class Z2(B) of origin-symmetric zonoids contained in B is just the class of
origin-symmetric convex bodies contained in B. Using this fact, an appropriate modification
of the proof of Bronshtein (1976), Theorem 4, of the lower bound in (25) can be made that
shows there is a constant c > 0 such that

(51) H(t,Z2(B)) ≥ ct−1/2,

for sufficiently small t > 0. It follows that the exact entropy exponents for Z2(B) and K2(B)
are the same, namely, −1/2. For n ≥ 3, however, the following theorem represents a dramatic
improvement.
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Theorem 7.3. Let Zn(B) denote the space of origin-symmetric zonoids contained in the unit
ball B in Rn, endowed with the Hausdorff metric. If n ≥ 3, then for all 0 < t < 1/2 and any
η > 0,

(52) H(t,Zn(B)) = O
(
t−2(n−1)/(n+2)−η

)
.

Proof. Let t > 0. Suppose that K is a zonoid in Zn(B). Clearly there is an N = N(n, t) ∈ N,
depending only on n and t, and a zonotope Z such that

(53) K ⊂ Z ⊂ (1 + t/2)K,

where Z =
∑N

i=1 a[−vi, vi], for some 0 < a < 1 and vi ∈ Sn−1, i = 1, . . . , N .
Let S be a t/(4N)-net in [0, 1] and let U be a t/(4N)-net in Sn−1. Let s be the closest point

in S to a, let ui be the closest point in U to vi, i = 1, . . . , N , and let

(54) Z ′ =
N∑

i=1

s[−ui, ui].

For each i = 1, . . . , N , Li = a[−vi, vi] and Mi = s[−ui, ui] are origin-symmetric line segments,
whose Hausdorff distance apart is bounded by the distance between the points avi and sui.
Using this, we obtain

δ(Z, Z ′) = ‖hZ − hZ′‖∞ ≤
N∑

i=1

‖hLi
− hMi

‖∞ ≤
N∑

i=1

‖avi − sui‖

≤
N∑

i=1

(‖avi − aui‖+ ‖aui − sui‖) ≤
N∑

i=1

(
t

4N
+

t

4N

)
=

t

2
.

From this and (53), we obtain δ(K, Z ′) ≤ t.
By Proposition 3.1, we can choose S and U so that |S| = O(N/t) and |U | = O((N/t)n−1).

With this choice, the number of zonotopes of the form (54) is O
(
(N/t)nN

)
. Therefore the

t-entropy of Zn(B) is

(55) H(t,Zn(B)) = O

(
N log

(
N

t

))
.

Bourgain and Lindenstrauss (1988b) proved that for 0 < t < 1/2, one can take

(56) N = N(3, t) = O

(
t−4/5

(
log

1

t

)2/5
)

,

when n = 3 and

(57) N = N(4, t) = O

(
t−1

(
log

1

t

)3/2
)

,
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when n = 4. They also obtained a good bound for n ≥ 5, but this was improved by Matoušek
(1996), who obtained

(58) N = N(n, t) = O
(
t−2(n−1)/(n+2)

)
,

for n ≥ 5. Substituting (56), (57), and (58) into (55), we obtain (52). ¤
Let ε and t be positive numbers and let k ∈ N and Z ∈ Zn be given. In accordance with

earlier notation, let
G̃k(ε, hZ) = {hL ∈ G̃ : |hZ − hL|k ≤ ε},

and let H(t, G̃k(ε, hZ)) = H(t, G̃k(ε, hZ), | · |k) be the t-entropy of G̃k(ε, hZ) with respect to the
pseudometric generated by | · |k.
Corollary 7.4. Let (ui) be a sequence in Sn−1 such that (u∗i ) is evenly spread and let Z be an
origin-symmetric zonoid in Rn with Z ⊂ RB for some R > 0. If n ≥ 3, then for any η > 0,
there are constants t6 = t6(n, (ui), η) and C6 = C6(n, (ui), η) such that

(59) H(t, G̃k(ε, hZ)) ≤ C6R
2(n−1)/(n+2)+η t−2(n−1)/(n+2)−η,

for all k ∈ N, 0 < ε ≤ R, and 0 < t ≤ Rt6.

Proof. This follows from Theorem 7.3, exactly as Corollary 5.5 follows from Proposition 5.4.
¤

Lemma 3.3 guarantees the existence of sequences satisfying the hypothesis of the next
theorem.

Theorem 7.5. Let σ > 0 and let K be an origin-symmetric convex body in Rn such that
K ⊂ RB, where κn−1R

n−1 ≥ 215/2σ. Let (ui) be a sequence of directions in Sn−1 with

∆∗
k = O(k−1/(n−1)), and suppose that Ẑk is a corresponding solution of (42). If n = 2, then,

almost surely, there are constants C7 = C7((ui)) and N7 = N7(σ,R, (ui)) such that

(60) δ2(ΠK, Ẑk) ≤ C7 σ4/5R1/5k−2/5,

for k ≥ N7. If n = 3 or 4, there is a constant γ0 = γ0(n) > 0 such that if 0 < γ < γ0, then,
almost surely, there are constants C8 = C8(n, (ui), γ) and N8 = N8(σ, n, R, (ui), γ) such that

(61) δ2(ΠK, Ẑk) ≤ C8 σ(n+2)/(2n+1)−γ R(n−1)2/(2n+1)+γk−(n+2)/(4n+2)+γ,

for k ≥ N8.
Finally, if n ≥ 5, there are constants C9 = C9(n, (ui)) and N9 = N9(σ, n, R, (ui)) such that

(62) δ2(ΠK, Ẑk) ≤ C9R
n−1k−1/(n−1),

for k ≥ N9.

Proof. Let ε0 = 215/2σ and η > 0. As K ⊂ RB, we have ΠK ⊂ κn−1R
n−1B. Since 0 < ε0 ≤

κn−1R
n−1, Corollary 5.5 (for n = 2, using G̃ ⊂ G) and Corollary 7.4 (for n ≥ 3) with Z and R

replaced by ΠK and κn−1R
n−1, respectively, yield

(63) H(t, G̃k(ε, hΠK)) ≤ C̃6R
(n−1)αt−α,
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for all k ∈ N and 0 < t ≤ Rt6, where

(64) α =

{
1/2 , if n = 2,
2(n− 1)/(n + 2) + η , if n ≥ 3.

If η < 6/(n+2), then α < 2, so applying Corollary 4.2 with this α, t0 = Rt6, M2 = C̃6R
(n−1)α,

and G replaced by G̃, we conclude that, almost surely, there are constants c0 = c0(σ, n, η) and
n0 = n0(σ, n, R, (ui), η) such that

(65) |hΠK − hẐk
|k ≤ c0R

(n−1)α/(2+α)k−1/(2+α),

for k ≥ n0.
The dependence on σ is dealt with by the device used in proving Corollary 5.7. By using

scaled measurements

λyi = λbK(ui) + λXi = λhΠK(ui) + λXi = hΠ(λ1/(n−1)K)(ui) + λXi,

replacing K, R, and σ by λ1/(n−1)K, λ1/(n−1)R, and λσ, respectively, and then setting λ = 1/σ,
we obtain from (65) the inequality

(66) |hΠK − hẐk
|k ≤ c1 σ2/(2+α) R(n−1)α/(2+α)k−1/(2+α),

which holds, almost surely, for some c1 = c1(n, η) and k ≥ n0.

By Lemma 3.3, we may apply Lemma 7.1 with K, L and R replaced by ΠK, Ẑk and
κn−1R

n−1, respectively, to obtain ΠK, Ẑk ⊂ SB for all k ≥ N∗
0 , where

(67) S = C∗
0

∣∣hΠK − hẐk

∣∣
k
+ 2κn−1R

n−1.

In Lemma 5.2 we make similar substitutions and replace the set {u1, . . . , uk} by {u∗1, . . . , u∗2k},
to conclude that

δ2(ΠK, Ẑk) ≤ (2kω∗k)
1/2

(|hΠK − hẐk
|k + 2∆∗

kS
)
,

for all k ≥ N∗
0 . This, (66), and the fact that by Lemma 3.3 we have kω∗k = O(1), imply that

there are constants C ′ = C ′(n, (ui), η) > 0 and N ′ = N ′(σ, n,R, (ui), η) > 0 such that

(68) δ2(ΠK, Ẑk) ≤ C ′ (σ2/(2+α) R(n−1)α/(2+α)k−1/(2+α) + Rn−1k−1/(n−1)
)

for all k ≥ N ′. For n ≥ 5 and large k, the second term dominates and (62) follows. For n ≤ 4
and large k, the first term dominates; then (64) and (68) yield (60) for n = 2 and (61) for
n = 3 and 4. ¤

The next theorem gives rates of convergence for Algorithm NoisyBrightLSQ in terms of the
Hausdorff metric. For n ≥ 3, we omit the dependence on R because this is complicated by
the use of Proposition 2.2; as we mentioned above, no particular effort was made to obtain
optimal results in the estimate (4).

Theorem 7.6. Let σ > 0 and let K be a convex body in Rn such that K ⊂ RB, where
κn−1R

n−1 ≥ 215/2σ. Let (ui) be a sequence of directions in Sn−1 with ∆∗
k = O(k−1/(n−1)), and
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suppose that Q̂k is an output of Algorithm NoisyBrightLSQ as stated above. If n = 2, then,
almost surely, there are constants C10 = C10(σ, (ui)) and N10 = N10(σ,R, (ui)) such that

(69) δ(K, Q̂k) ≤ C10R
7/15k−4/15,

for k ≥ N10.
If n ≥ 3, suppose in addition that rB ⊂ K for some 0 < r < R. For n = 3 or 4, there is

a constant γ1 = γ1(n) > 0 such that if 0 < γ < γ1, then, almost surely, there are constants
C11 = C11(σ, n, r, R, (ui), γ) and N11 = N11(σ, n, r, R, (ui), γ) such that

(70) δ(K, Q̂k) ≤ C11k
− n+2

n(n+4)(2n+1)
+γ,

for k ≥ N11.
If n ≥ 5 and γ > 0, then, almost surely, there are constants C12 = C12(σ, n, r, R, (ui), γ)

and N12 = N12(σ, n, r, R, (ui), γ) such that

(71) δ(K, Q̂k) ≤ C12k
− 2

(n−1)n(n+4)
+γ,

for k ≥ N12.

Proof. Suppose that n = 2. Then ΠK and ΠQ̂k are rotations about the origin by π/2 of 2K

and 2Q̂k, respectively. Then (69) follows directly from (60) and (1).
Now suppose that n ≥ 3. We have sB ⊂ ΠK ⊂ tB, where s = κn−1r

n−1 and t = κn−1R
n−1.

Note that (61) (for n = 3 or 4), (62) (for n ≥ 5), and (1) imply that, almost surely, there is
a constant N13 = N13(σ, n, r, R, (ui)) such that (48) holds for all k ≥ N13. As in the proof of
Theorem 7.2, we can conclude that

(72) r0B ⊂ K, Q̂k ⊂ R0B,

for k ≥ N13, where r0 and R0 are given by (50). The desired results, (70) for n = 3 or 4 and

(71) for n ≥ 5, now follow from Proposition 2.2 (with L = Q̂k) and Theorem 7.5. ¤
The use of Proposition 2.2 in the previous theorem introduces a factor that worsens the

convergence rates considerably. For example, when n = 3, we obtain a convergence rate of
approximately k−1/30!

8. Monte Carlo simulations

The theory of empirical processes that underlies our theoretical results suggests that the
rates of convergence obtained in Corollary 5.7, for support function estimation with respect
to the pseudonorm | · |k, are suboptimal for n ≥ 5 (compare p. 162 of van de Geer (2000)).
However, for n ≤ 4 we expect them to be optimal, and this should carry over to the (identical)
rates for Algorithm NoisySupportLSQ with respect to the L2 metric, given in Theorem 6.2, as
well as to the rates obtained in connection with Algorithm BrightLSQ, given in Theorem 7.5.
On the other hand, we cannot expect the rates given in Theorems 6.2 and 7.6 involving the
Hausdorff metric to be optimal, in view of the use of (1) (and, in the case of Theorem 7.6, the
use of Proposition 2.2).
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Extensive Monte Carlo simulations were run. The simulations are restricted to the case
n = 2, since there does not appear to be a fully satisfactory implementation of Algorithm Noisy-
SupportLSQ in higher dimensions (see the remarks in Section 6) and our present implementa-
tion of Algorithm NoisyBrightLSQ is too slow to allow enough iterations (we hope to improve
this in the near future). In each simulation, a polygon was reconstructed 1000 times from
noisy measurements of its support function or brightness function, using our implementations
of Algorithm NoisySupportLSQ or Algorithm NoisyBrightLSQ, respectively. We developed
the computer programs with the help of Chris Eastman, Greg Richardson, Thomas Riehle,
and Chris Street (work done as Western Washington University undergraduates), and Amyn
Poonawala (at UC Santa Cruz).

Before describing the results of the simulations, we need to clarify the role of R and the
assumption in the above theorems about its relation to the noise level σ. For example, the
inequality R ≥ 215/2σ is often assumed in order to prove that d(K, P̂k) ≤ CσaRbfn(k), where
d is the pseudometric | · |k, the L2 metric, or the Hausdorff metric. To test the dependence on
k or on σ over any fixed range σ0 ≤ σ ≤ σ1, we can obviously choose R large enough so that
K ⊂ RB and R ≥ 215/2σ1 is satisfied. We claim that the condition R ≥ 215/2σ also does not
play any essential role in testing the dependence on R, and that we can view R as a scaling
factor of K. To see this, suppose K, σ, and a range 0 < λ0 ≤ λ ≤ λ1 of scaling factors are
given. Choose R0 large enough so that K ⊂ R0B and λ0R0 ≥ 215/2σ. Then λK ⊂ (λR0)B and
λR0 ≥ 215/2σ for λ ≥ λ0. Replacing K and R in our theorems by λK and λ0R0, respectively,
we obtain

d(λK, P̂ (λ)k) ≤ Cσa(λR0)
bfn(k) = CσaRb

0λ
bfn(k) = C ′λbfn(k),

where P̂ (λ)k is the output polytope for input λK and where C ′ does not depend on λ. Thus
the exponent for λ is the same as that for R above, proving the claim.
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Figure 1. A regular 11-gon and irregular 9-gon.

Two input polygons were used, the regular 11-gon and irregular 9-gon displayed in Figure 1.
Some results for the regular 11-gon are shown in Figure 2. Each graph shows the results
from 1000 iterations of Algorithm NoisySupportLSQ. The graphs are divided vertically into
three groups of six graphs, corresponding to noise levels σ = 0.01, 0.1, and 1. In the left-
hand column, the error (i.e., the distance between the input polygon and output polygon) is
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Figure 2. Error against R and k for the regular 11-gon.

measured with the pseudonorm | · |k, while in the middle and right-hand columns, the L2 and
Hausdorff distance, respectively, is used instead. Each graph shows a curve giving the average
error over all 1000 iterations, and points plotted above the curve giving the maximum error
over the 1000 iterations. In each group of six graphs the top row shows error against the
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scaling factor R varying from R = 0.2 to R = 6 in steps of 0.2, where the support function is
always measured in the 35 directions at angles 0, 2π/35, 4π/35, . . . , 68π/35. The second row
in each group of six graphs shows error against the number k of measurements (in directions
at angles 0, 2π/k, 4π/k, . . . , 2(k−1)π/k) varying from 20 to 100 in steps of 5, with the scaling
factor R fixed at 1.

For each of the 18 graphs in Figure 2, we used standard software to fit a curve of the form
CRb or Ckc (for error against R or k, respectively) to the points representing the averages
over the 1000 iterations, and we repeated this for the points representing the maxima over
the 1000 iterations. The corresponding values of b and c are shown in Table 1.

Average Maximum
Error | · |k L2 Hausdorff | · |k L2 Hausdorff

σ = 0.01 b 0.5447 0.7768 0.8815 0.4916 0.6172 0.6979
c -0.3574 -0.6616 -0.5965 -0.4011 -0.6550 -0.4590

σ = 0.1 b 0.2020 0.2226 0.3248 0.1521 0.1567 0.2521
c -0.4006 -0.3593 -0.3052 -0.4415 -0.4468 -0.3262

σ = 1 b 0.1787 0.1684 0.2668 0.2771 0.2295 0.1686
c -0.4268 -0.4202 -0.3628 -0.5338 -0.5347 -0.4316

Table 1. Fit for average and maximum error against R and k (11-gon).

Corresponding results for the irregular 9-gon from Figure 1 are shown in Figure 3 and
Table 2. For reasons explained below, the simulations were run only at the noise levels
σ = 0.1 and σ = 1.

Average Maximum
Error | · |k L2 Hausdorff | · |k L2 Hausdorff

σ = 0.1 b 0.6692 0.7603 0.9396 0.7559 0.5756 0.7485
c -0.3653 -0.7404 -0.7085 -0.4200 -0.6585 -0.4960

σ = 1 b 0.1646 0.1905 0.3778 0.0916 0.1010 0.3092
c -0.4143 -0.4076 -0.3486 -0.4364 -0.4375 -0.4125

Table 2. Fit for average and maximum error against R and k (9-gon).

The case n = 2 of Corollary 5.7 and Theorem 6.2 suggests that the appropriate values are
b = 1/5 = 0.2 and c = −2/5 = −0.4 when errors are measured with | · |k and the L2 metric,
and b = 7/15 = 0.4666 . . . and c = −4/15 = −0.2666 . . . when errors are measured with
the Hausdorff metric. Of course, these theorems apply only for sufficiently large values of k
depending on both the noise level σ and the scale factor R.
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Figure 3. Error against R and k for the irregular 9-gon.

Despite the widely varying values in Tables 1 and 2, we believe that the results of our Monte
Carlo simulations are compatible with the expectations outlined in the first paragraph of this
section, except perhaps in the case of Hausdorff error against scale. To see this, note firstly
that when there is no noise (σ = 0), Algorithm NoisySupportLSQ will produce an output
polygon whose support function values in the measured directions agree exactly with those of
the input polygon. Then the | · |k error will be zero for all values of R and k. Moreover, the
L2 and Hausdorff distances will clearly then vary linearly with scale factor R. Thus we can
expect similar behavior when the noise level is low, as observed in Figure 2 when σ = 0.01.
These results do not contradict the theory, since, as mentioned above, in Corollary 5.7 and
Theorem 6.2, k must be sufficiently large in a manner depending on both σ and R. When the
noise level is medium, σ = 0.1, the values given in Table 1 for the | · |k error, b = 0.2020 and
c = −0.4006, for the average of the 1000 iterations are in very close agreement with theory,
and the agreement is only slightly worse for the other metrics and at the high noise level
σ = 1, except for Hausdorff error against scale.
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Naturally, the results for the maximum of the 1000 iterations are more unreliable due to
the stochastic nature of the simulations. Again, a poor fit does not necessarily contradict
Corollary 5.7 and Theorem 6.2 (note the words “almost surely” in the statements of these
theorems), especially for high noise levels. Better fits can be expected for data representing 1
or 2 standard deviations, for example, above the average for the 1000 iterations. For example,
when σ = 1, the data representing 2 standard deviations above the average gives c = −0.4505,
−0.4479, and −0.3745 for the | · |k, L2, and Hausdorff errors, respectively (compare the three
numbers at the right of the bottom row in Table 1).

Another interesting phenomenon arises when we examine Figure 3 and Table 2, showing
the results for the 9-gon. Since the input polygon is irregular, its support function may agree
quite closely with that of an output polygon at two adjacent measurement directions, but
differ strongly at angles between these directions, and these differing support function values
can dominate in the L2 and Hausdorff distances. The result is that even at the moderate noise
level σ = 0.1, we see the same almost linear dependence for L2 and Hausdorff error against
R that we saw for the regular 11-gon at the low noise level σ = 0.01. (For this reason we did
not perform the simulations for the 9-gon when σ = 0.01.) This effect is subdued as the noise
level rises, and we see again fairly good agreement with theory in the values of b and c for the
average of the 1000 iterations at noise level σ = 1. Better agreement still can be expected for
larger values of k; for example, if we use only values of k in the range 60 ≤ k ≤ 100, the values
of c corresponding to σ = 0.1 for the average over all 1000 iterations become c = −0.4099,
−0.5227, and −0.5767 for the | · |k, L2, and Hausdorff errors, respectively (compare the three
numbers at the left of the second row in Table 2).
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Figure 4. Error against σ for the regular 11-gon.

In Figure 4, the three types of error for the regular 11-gon are plotted against noise level σ
varying from σ = 0.02 to σ = 0.5 in steps of 0.02. Here the support function is always measured
in the 35 directions at angles 0, 2π/35, 4π/35, . . . , 68π/35, and the polygon is unscaled (i.e,
R = 1). As before, each graph shows a curve giving the average error over all 1000 iterations,
and points plotted above the curve giving the maximum error over the 1000 iterations. The
exponent a for curves of best fit of the form Cσa are, for the average, a = 0.7894, 0.8038, and
0.7150 for the | · |k, L2, and Hausdorff errors, respectively. The corresponding exponents for
the maximum error are a = 0.9286, 0.9346, and 0.7593. These are in good agreement with
the values a = 4/5 = 0.8 for the | · |k and L2 errors given in Corollary 5.7 and Theorem 6.2.
The less convincing agreement with the value a = 8/15 = 0.5333 . . . for the Hausdorff error
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given in Theorem 6.2 is not surprising, since the discrepancy between L2 and Hausdorff errors
that occurs via (1) is smaller for the regular 11-gon than for a general polygon. Indeed, the
corresponding values for the irregular 9-gon in Figure 1 are a = 0.4345 for the average and
a = 0.6001 for the maximum over the 1000 iterations.

Suppose that we attempt to reconstruct an origin-symmetric planar convex body K, first
with Algorithm NoisyBrightLSQ, using k noisy brightness function measurements at angles
0, π/k, . . . , (k − 1)π/k, and then with Algorithm NoisySupportLSQ, using 2k noisy support
function measurements at angles 0, π/k, . . . , (2k − 1)π/k. The two output polygons will in
general be different, but apart from the noise, this is only because the two sets of measurements
do not “match.” Indeed, for any angle α ∈ [0, 2π),

(73) hK(α± π/2) = bK(α)/2,

in view of the origin symmetry of K. In fact, there is a very close relationship between our
implementations of Algorithms NoisySupportLSQ and NoisyBrightLSQ when n = 2. If we
run Algorithm NoisyBrightLSQ with noisy brightness function values yi measured at angles
αi, i = 1, . . . , k, in the interval [0, π), our implementation will produce an origin-symmetric

output polygon Q̂k with outer normals among the directions αi ± π/2, i = 1, . . . , k; see
Gardner and Milanfar (2003). Using this fact and (73), it is easy to prove that if we then run
Algorithm NoisySupportLSQ using yi/2 as noisy support function value at angle αi ± π/2,

i = 1, . . . , k, the output polygon will also be Q̂k. Thus very similar results can be expected
from the two algorithms when n = 2 and K is origin symmetric, and we verified this by
performing simulations of 1000 iterations of Algorithm NoisyBrightLSQ for a regular origin-
symmetric 12-gon and an affinely regular origin-symmetric octagon. We omit the details,
noting only that values of a and b indicated by the case n = 2 of Theorems 7.5 and 7.6 are
the same as those above, and that the observed agreement was similar in all respects to that
detailed above for Algorithm NoisySupportLSQ.

9. Application to a stereological problem

In this section, the convergence results above are used to obtain strong consistency of an
estimator for the directional measure of a random collection of fibers. Details about the
following notions can be found in Chapter 9 of Stoyan, Kendall, and Mecke (1995). A fiber
is a C1 curve of finite length, and a fiber process Y is a random element with values in the
family of locally finite collections of fibers in Rn. We assume that Y is stationary (the term
homogeneous is also used), meaning that the distribution of Y is translation invariant. Suppose
that A is a Borel set in Rn with Vn(A) = 1 and E is an origin-symmetric Borel set in Sn−1.
Let µ(E) be the mean total length of the union of all fiber points in A with a unit tangent
vector in E. Due to the stationarity of Y , µ(E) is independent of A and so this definition
gives rise to a unique even Borel measure µ in Sn−1 called the directional measure of Y . We
also assume that, almost surely, the fibers of Y do not all lie in parallel hyperplanes, so that
µ is not concentrated on a great sphere. The length density L = µ(Sn−1) is the mean total
length of fibers per unit volume. The probability measure µ/L, called the rose of directions,
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can be interpreted as the distribution of a unit tangent vector at a “typical” fiber point, and
hence can be used to quantify anisotropy of Y .

In applications, the fiber process Y often cannot be observed directly, but only via its inter-
sections with planes. Due to the stationarity, we can restrict our considerations to hyperplanes
containing the origin. For each u ∈ Sn−1, let γ(u) be the mean number of points in Y ∩ u⊥

per unit (n− 1)-dimensional volume. The function γ is called the rose of intersections of Y .
It is well known that

(74) γ(u) =

∫

Sn−1

|u · v| dµ(v)

for all u ∈ Sn−1. As h(u) = |u · v|, u ∈ Sn−1 is the support function of the line segment
[−v, v], (74) shows that γ is the support function of a zonoid Z, called the associated zonoid
or Steiner compact of Y . Minkowski’s existence theorem implies that there is a convex body
K with surface area measure 2µ. As

(75)
1

2

∫

Sn−1

|u · v| dS(K, v) = hΠK(u),

for all u ∈ Sn−1 (see, for example, Schneider (1993), Equation (5.3.34)), we have hZ(u) =
γ(u) = hΠK(u), u ∈ Sn−1, and so Z = ΠK.

Since γ(u) = hΠK(u) = bK(u) for u ∈ Sn−1 and µ = (1/2)S(K, ·), the following slightly
modified version of Phase I of Algorithm NoisyBrightLSQ allows the reconstruction of an
approximation µ̂k to µ from noisy measurements of γ.

Algorithm NoisyRoseLSQ

Input: Natural numbers n ≥ 2 and k; vectors ui ∈ Sn−1, i = 1, . . . , k that span Rn; noisy
measurements

(76) yi = γ(ui) + Xi,

i = 1, . . . , k of the rose of intersections γ of an unknown stationary fiber process Y in Rn,
where the Xi’s are independent normal N(0, σ2) random variables.

Task: Construct a finitely supported measure µ̂k in Sn−1 that approximates the directional
measure µ of Y .

Action:

Find a zonotope Ẑk ∈ Zn that solves the following least squares problem:

(77) min
Z∈Zn

k∑
i=1

(yi − hZ(ui))
2 .

Calculate the finitely supported surface area measure S(Q̂k, ·) of the origin-symmetric polytope

Q̂k satisfying

Ẑk = ΠQ̂k
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and set µ̂k = (1/2)S(Q̂k, ·). ¤
As was remarked for Algorithm NoisyBrightLSQ after the statement of that algorithm,

Ẑk can be assumed to be a sum of line segments, each parallel to a node corresponding
to U = {u1, . . . , uk}, and only the lengths of these line segments has to be determined.
Applying the same observation leads to an output µ̂k that is supported by the finite set of
nodes corresponding to U . This implementation of Algorithm NoisyRoseLSQ was suggested
previously by Männle (2002), who obtained the following result.

Proposition 9.1. Let Y be a stationary fiber process in Rn with directional measure µ and
let (ui) be a sequence in Sn−1 such that (u∗i ) is evenly spread. If µ̂k is an output from Al-
gorithm NoisyRoseLSQ as stated above, then, almost surely, µ̂k converges weakly to µ, as
k →∞.

Männle (2002) obtained Proposition 9.1 using local Kuhn-Tucker conditions for the solutions
of a weighted least squares problem slightly more general than (77). However, the result follows
immediately from Theorem 7.2 on observing that the map that takes K ∈ Kn to S(K, ·) is
weakly continuous on Kn (see, for example, Schneider (1993), p. 205).

The remainder of this section is devoted to presenting a refinement of Proposition 9.1 that
provides rates of convergence of the estimators. This requires the introduction of metrics on the
cone of finite Borel measures in Sn−1, to quantify the deviation of the estimator from the true
directional measure. Details for the following definitions in the case of probability measures
can be found in Section 11.3 of Dudley (2002); the extension to arbitrary (nonnegative)
measures is not difficult.

Let µ and ν be finite Borel measures in Sn−1. Define

(78) dD(µ, ν) = sup

{∣∣∣∣
∫

Sn−1

fd(µ− ν)

∣∣∣∣ : ‖f‖BL ≤ 1

}
,

where for any real-valued function f on Sn−1 we define

‖f‖BL = ‖f‖∞ + ‖f‖L and ‖f‖L = sup
u6=v

|f(u)− f(v)|
‖u− v‖ .

It can be shown that dD is a metric, sometimes called the Dudley metric (though he attributes
its definition to Fortet and Mourier (1953)) on the cone of finite Borel measures, inducing the
weak topology. Now define

(79) dP (µ, ν) = inf{ε > 0 : µ(F ) ≤ ν(F ε) + ε, ν(F ) ≤ µ(F ε) + ε, F closed in Sn−1},
where

F ε = {u ∈ Sn−1 : inf
v∈F

‖u− v‖ < ε}.
Then dP is also a metric, the Prohorov metric, that induces the weak topology. The Dudley
and Prohorov metrics are related, as we show below in Lemma 9.5.

The following proposition follows from a stability result of Hug and Schneider (2002) that
generalizes one step in the proof of the version of Proposition 2.2 due to Bourgain and Lin-
denstrauss (1988a).
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Proposition 9.2. Let K and L be origin-symmetric convex bodies in Rn, such that

r0B ⊂ K,L ⊂ R0B,

for some 0 < r0 ≤ R0. If 0 < b < 2/(n(n + 4)), there is a constant c′ = c′(b, n, r0, R0) such
that

(80) dD(S(K, ·), S(L, ·)) ≤ c′δ2(ΠK, ΠL)b.

Proof. We refer the reader to Theorem 5.1 of Hug and Schneider (2002). In that result, more
general than the statement of our theorem, take µ = S(K, ·) − S(L, ·) and Φ(u · v) = |u · v|,
so that according to Hug and Schneider (2002), Equation (52),

(TΦ(µ))(u) = V
(
K|u⊥)− V

(
L|u⊥)

= hΠK(u)− hΠL(u).

As is noted by Hug and Schneider (2002), who assume throughout that n ≥ 3, we may then
take β = (n + 2)/2 in their Theorem 5.1. With these substitutions, our theorem for n ≥ 3
follows immediately.

When n = 2, Theorem 5.1 of Hug and Schneider (2002) is still valid (and our theorem follows
as before), but its proof requires an adjustment. One of the main steps is the approximation
of a continuous function f by its Poisson integral

fr(u) =
1

Vn−1(Sn−1)

∫

Sn−1

1− r2

(1 + r2 − 2r u · v)n/2
f(v) dv,

where 0 < r < 1 is a parameter. The proof of Theorem 5.1 of Hug and Schneider (2002) uses
the estimate

(81) ‖f − fr‖∞ ≤ 2n+1Vn−2(S
n−2)

Vn−1(Sn−1)
‖f‖L(1− r) log

2

1− r
,

for 1/4 ≤ r < 1, from Lemma 5.5.8 of Groemer (1996), where the proof applies only when
n ≥ 3. However, when n = 2, it can be shown that

(82) ‖f − fr‖∞ ≤ 16
√

3

π
‖f‖L(1− r) log

2

1− r
,

for 1/4 ≤ r < 1. Although this estimate is slightly weaker than (81), it is sufficient to prove
Theorem 5.1 of Hug and Schneider (2002) for n = 2. For the convenience of the reader, we
supply a proof of (82) in the Appendix. ¤

Let D denote the set of degenerate finite Borel measures in Sn−1, that is, those whose
support is contained in a great sphere.

Lemma 9.3. Let µ be a finite Borel measure in Sn−1 and let

(83) dD(µ,D) = inf
ν∈D

dD(µ, ν).

Then the infimum is attained and the mapping µ 7→ dD(µ,D) is weakly continuous. Conse-
quently, the support of µ is not contained in any great sphere if and only if dD(µ,D) > 0.
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Proof. For a ≥ 0, let
Da = {ν ∈ D : ν(Sn−1) ≤ 2a}.

If 0 denotes the zero measure, we have

dD(µ,D) ≤ dD(µ, 0) = µ(Sn−1).

Therefore, if a ≥ µ(Sn−1), then

(84) dD(µ,D) = inf
ν∈D, dD(µ,ν)≤a

dD(µ, ν) = inf
ν∈Da

dD(µ, ν),

where the last equality comes from substituting f ≡ 1 in the definition (78) of dD(µ, ν). It is
easy to see that D is weakly closed and hence Da is weakly compact, so the last infimum in
(84) is attained.

Let (µk) be a sequence of finite Borel measures in Sn−1 converging to µ. Choose a so that
µk(S

n−1) ≤ a for all k. We know that there are measures ν ∈ Da and νk ∈ Da, k = 1, 2, . . .
such that

dD(µ,D) = dD(µ, ν) and dD(µk,D) = dD(µk, νk),

for k = 1, 2 . . . . The weak compactness of Da implies that a subsequence of (νk) converges to
a measure ν̃ ∈ Da. Then

dD(µ,D) ≤ dD(µ, ν̃) = lim inf
k→∞

dD(µk, νk) = lim inf
k→∞

dD(µk,D)

≤ lim sup
k→∞

dD(µk,D) ≤ lim sup
k→∞

dD(µk, ν) = dD(µ, ν) = dD(µ,D).

Therefore
lim
k→∞

dD(µk,D) = dD(µ,D),

as required. ¤
The following refinement of Proposition 9.1 is phrased in terms of the Dudley metric. For

n ≥ 3, the extra condition that d ≤ dD(µ,D) for some d > 0 is needed. It is a natural analog
of the condition that rB ⊂ K for some r > 0 in earlier results such as Theorem 7.6. Lemma
9.3 implies that such a lower bound d > 0 always exists due to our general assumption that
the directional measure µ is not degenerate.

Theorem 9.4. Let σ > 0. Let Y be a stationary fiber process in Rn with directional measure
µ and length density L = µ(Sn−1). Let (ui) be a sequence of directions in Sn−1 with ∆∗

k =
O(k−1/(n−1)) and let µ̂k be an output from Algorithm NoisyRoseLSQ as stated above.

If n = 2 and β > 0, then, almost surely, there are constants C14 = C14(σ, L, (ui), β) and
N14 = N14(σ, L, (ui), β) such that

(85) dD(µ, µ̂k) ≤ C14k
−2/15+β,

for k ≥ N14.
For n ≥ 3 let 0 < d ≤ dD(µ,D). If n = 3 or 4 and β > 0, then, almost surely, there are

constants C15 = C15(σ, n, L, d, (ui), β) and N15 = N15(σ, n, L, d, (ui), β) such that

(86) dD(µ, µ̂k) ≤ C15k
− n+2

(n+4)(2n+1)
+β,
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for k ≥ N15.
Finally, if n ≥ 5 and β > 0, there are constants C16 = C16(σ, n, L, d, (ui), β) and N16 =

N16(σ, n, L, d, (ui), β) such that

(87) dD(µ, µ̂k) ≤ C16k
− 2

(n−1)(n+4)
+β,

for k ≥ N16.

Proof. Let K and Q̂k be the origin-symmetric convex bodies with surface area measure 2µ
and 2µ̂k, respectively, and recall that Ẑk = ΠQ̂k.

Suppose that n = 2. According to Schneider (1993), pp. 290–291, the mean width

w(K) =
1

π

∫

S1

hK(u) du

of K satisfies πw(K) = S(K,S1) = L. Since K = −K, for each x ∈ K, [−x, x] ⊂ K and so

4

π
‖x‖ = w([−x, x]) ≤ w(K) =

1

π
L.

It follows that K ⊂ (L/4)B. By the case n = 2 of Theorem 7.5, with

R = max{L/4, (215/2σ/κn−1)
1/(n−1)},

almost surely, there are constants C17 = C17(σ, L, (ui)) and N17 = N17(σ, L, (ui)) such that

δ2(ΠK, ΠQ̂k) = δ2(ΠK, Ẑk) ≤ C17k
−2/5,

for all k ≥ N17. The inequality (80) with L = Q̂k now implies (85).
Suppose that n ≥ 3 and let 0 < d ≤ dD(µ,D), which is possible by Lemma 9.3. Let

M = M(L, d) be the set of all finite Borel measures ν in Sn−1 such that ν(Sn−1) ≤ L and
dD(ν,D) ≥ d. Then µ ∈M andM is weakly compact by Lemma 9.3. Using the equicontinuity
of the family {fu : u ∈ Sn−1} of functions defined by fu(v) = |u · v| for v ∈ Sn−1, we see that
the map T : Sn−1 ×M→ R defined by

T (u, ν) =

∫

Sn−1

|u · v| dν(v)

is continuous. Therefore T attains its minimum r = r(n, L, d) at some point (u0, ν0) in the
compact set Sn−1 ×M. Note that

r = T (u0, ν0) =

∫

Sn−1

|u0 · v| dν0(v) > 0,

as ν0 is not degenerate. Then T (u, µ) ≥ r for all u ∈ Sn−1, so by (75) and the fact that
S(K, ·) = 2µ, we have

hΠK(u) =

∫

Sn−1

|u · v| dµ(v) ≥ r,
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for all u ∈ Sn−1. Therefore rB ⊂ ΠK. On the other hand, (75) also implies hΠK(u) ≤ L = R.
Summarizing, we have shown that there are constants 0 < r < R, depending only on n, L,
and d, such that

rB ⊂ ΠK ⊂ RB.

As in the proof of Theorem 7.2, we can conclude

r0B ⊂ K ⊂ R0B,

with positive constants r0 = r0(n, d,R) and R0 = R0(n, d, R). Theorem 7.5 can now be applied
with

R = max{R0, (2
15/2σ/κn−1)

1/(n−1)}.
The inequality (80) with L = Q̂k then yields (86) and (87). ¤

To obtain a version of Theorem 9.4 in terms of the Prohorov metric, the following lemma
is useful.

Lemma 9.5. Let µ and ν be finite Borel measures in Sn−1 with m0 = µ(Sn−1) 6= 0. If
dD(µ, ν) ≤ 1, then

dP (µ, ν) ≤ (
1 +

√
3 + m0

)
dD(µ, ν)1/2.

Proof. We may assume that n0 = ν(Sn−1) 6= 0 and let µ1 = µ/m0 and ν1 = ν/n0. For s, t > 0
the definition (79) of dP implies that

dP (sν, tν) = inf{ε > 0 : sν(F )− tν(F ε) ≤ ε, tν(F )− sν(F ε) ≤ ε, F closed in Sn−1}
≤ inf{ε > 0 : sν(F ε)− tν(F ε) ≤ ε, tν(F ε)− sν(F ε) ≤ ε, F closed in Sn−1}
≤ n0|s− t|,

while the definition (78) of dD (with f ≡ 1) yields

dD(µ, ν) ≥ |m0 − n0|.
Therefore

dP (µ, ν) ≤ dP (µ, (m0/n0)ν) + dP ((m0/n0)ν, ν)

≤ dP (m0µ1,m0ν1) + n0|m0/n0 − 1| ≤ dP (m0µ1,m0ν1) + dD(µ, ν).(88)

Let 0 < ε < dP (m0µ1,m0ν1). By (79), there is a closed set F in Sn−1 such that

µ1(F ) > ν1(F
ε) +

ε

m0

or ν1(F ) > µ1(F
ε) +

ε

m0

.

Setting α = ε/m0 and β = ε in Proposition 3 of Dudley (1968), we obtain

(89)
2

m0(2 + ε)
ε2 ≤ dD(µ1, ν1).

By (79) again, we have dP (µ1, ν1) ≤ 1 and

dP (m0µ1,m0ν1) = inf{ε > 0 : µ1(F ) ≤ ν1(F
ε)+

ε

m0

, ν1(F ) ≤ µ1(F
ε)+

ε

m0

, F closed in Sn−1}.
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Therefore, if m0 ≤ 1, we have

dP (m0µ1,m0ν1) ≤ dP (µ1, ν1) ≤ 1,

while if m0 ≥ 1, then

dP (m0µ1,m0ν1) =

= m0 inf{ε > 0 : µ1(F ) ≤ ν1(F
m0ε) + ε, ν1(F ) ≤ µ1(F

m0ε) + ε, F closed in Sn−1}
≤ m0dP (µ1, ν1) ≤ m0.

Thus, for any m0 > 0, we have ε < dP (m0µ1,m0ν1) ≤ 1 + m0. Substitution into (89) yields

2

m0(3 + m0)
ε2 ≤ dD(µ1, ν1).

As ε < dP (m0µ1,m0ν1) was arbitrary, we conclude that

2

m0(3 + m0)
dP (m0µ1,m0ν1)

2 ≤ dD(µ1, ν1)

≤ dD(µ/m0, ν/m0) + dD(ν/m0, ν/n0)

≤ 1

m0

dD(µ, ν) + n0

∣∣∣∣
1

m0

− 1

n0

∣∣∣∣ ≤
2

m0

dD(µ, ν).

Substituting this into (88), and using the hypothesis dD(µ, ν) ≤ 1, we obtain the desired
inequality. ¤

With Lemma 9.5 in hand, the estimates of Theorem 9.4 can be converted to the Prohorov
metric. Since this is routine, we shall only give one example. By Lemma 9.5 and (86), under
the hypotheses of Theorem 9.4 with n = 3, for all γ > 0, almost surely, there are constants
C18 = C18(σ,R, (ui), γ) and N18 = N18(σ,R, (ui), γ) such that

dP (µ, µ̂k) ≤ C18k
−5/98+γ,

for all k ≥ N18. Thus the exponent when n = 3 is approximately −1/20.
We close this section with a comment on the assumption in (76) that the errors are normally

distributed. In applications, the measurements yi come from counting intersection points, so
they are integer random variables. If L is large, our assumption is appropriate. Otherwise, a
model that allows only integer values for yi could be more apt. For example, if Y is a Poisson
line process (one of the most common models in stochastic geometry), then the number yi of
intersection points of its fibers with a unit window in u⊥ is Poisson distributed with mean
γ(ui), i = 1, . . . , k. Under this assumption on the distribution, the maximum likelihood
problem no longer corresponds to a quadratic program. Nevertheless, its solution is a strongly
consistent estimator for µ (see Kiderlen (2001)), and the tools provided by van de Geer (2000)
would still allow results giving rates of convergence.



CONVERGENCE OF RECONSTRUCTION ALGORITHMS 41

10. Appendix

10.1. Uniformly distributed sequences. Here we add a few remarks to assist the reader
in comparing the various properties of sequences of unit vectors considered in Section 3 with
another well-known property. Let (ui) be a sequence in Sn−1 and let µk be the probability
measure that is the sum of point masses of weight 1/k on each of the points u1, . . . , uk. The
sequence (ui) is called uniformly distributed in Sn−1 if the measures µk converge weakly to
(normalized) Lebesgue measure in Sn−1. This is equivalent to the condition

lim
k→∞

1

k
|{u1, . . . , uk} ∩ E| = Vn−1(E)/Vn−1(S

n−1),

for every Borel set E ⊂ Sn−1 with Vn−1(∂E) = 0. Uniformly distributed sequences originated
in the work of H. Weyl around 1916 and have found many applications; see, for example, the
book of Hlawka (1984).

It follows immediately from the definition that a uniformly distributed sequence in Sn−1 is
evenly spread. That the converse is false can be seen by means of the following example. If
(ui) is a sequence of independent random vectors in Sn−1 with the same distribution µ, then
the corresponding measures µk as defined above almost surely converge weakly to µ, by the
strong law of large numbers. If µ is not the normalized Lebesgue measure in Sn−1, then (ui)
is almost surely not uniformly distributed. However, if µ has a positive continuous density,
then (ui) is almost surely evenly spread.

Neither of the conditions (i) or (ii) of Lemma 3.2 implies that the sequence (ui) is uniformly
distributed. Indeed, let (ui) be a sequence satisfying (i) and let u ∈ Sn−1 be arbitrary. Then
the new sequence (u1, u, u2, u, u3, u, . . .) still satisfies (i) but is not uniformly distributed. The
same construction applies with condition (ii) of Lemma 3.2.

Conversely, a uniformly distributed sequence need not satisfy (i) or (ii) of Lemma 3.2. The
following probabilistic argument shows this when n = 2. If (ui) is a sequence of independent
random vectors distributed according to normalized Lebesgue measure in Sn−1, then (ui) is
almost surely uniformly distributed. Now the random variable ∆k/π has the same distribution
as the length Lk of the longest interval obtained by dividing the unit interval [0, 1] into k
subintervals separated by k − 1 independent uniform random points in [0, 1]. It follows from
Theorem 2.1.3 of Mathai (1999) that

ELk = 1− 1!(k − 1)!

(1 + k − 1)!

k−1∑
j=1

aj,

where aj = (k − j)/(k − j + 1). Therefore

ELk = 1− 1

k

k−1∑
j=1

(
1− 1

k − j + 1

)
= 1− k − 1

k
+

1

k

k−1∑
j=1

1

k − j + 1
=

1

k

k∑
j=1

1

j
.
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It follows that

E∆k =
π

k

k∑
j=1

1

j
,

which implies that with positive probability (ui) does not satisfy condition (i) of Lemma 3.2.
In R2, ωk ≥ ∆k, so such sequences also do not satisfy condition (ii) of Lemma 3.2.

10.2. Proof of (82). From p. 228 of Groemer (1996), we have, for u ∈ S1,

(90) |f(u)− fr(u)| ≤ 1

2π
(1− r2)‖f‖LJ(r, u),

where

J(r, u) =

∫

S1

‖u− v‖
1 + r2 − 2r u · v dv.

According to the penultimate displayed formula on p. 227 of Groemer (1996), we have

J(r, u) = 8

∫ 1

0

s(1− s2)−1/2

1 + r2 − 2r + 4rs2
ds.

Using 1/4 ≤ r, it follows that

J(r, u) ≤ 8

∫ 1

0

s(1− s2)−1/2

(1− r)2 + s2
ds.

If 0 < t < 1, then

1

8
J(r, u) ≤

∫ t

0

s(1− s2)−1/2

(1− r)2 + s2
ds +

∫ 1

t

s(1− s2)−1/2

(1− r)2 + s2
ds

≤ (1− t2)−1/2

∫ 1

0

s

(1− r)2 + s2
ds +

1

t2

∫ 1

t

s(1− s2)−1/2 ds

≤ 1

2
(1− t2)−1/2 log

(1− r)2 + 1

(1− r)2
+

1

t2
(1− t2)1/2

= (1− t2)−1/2

(
1

2
log

(1− r)2 + 1

(1− r)2
+

1

t2
− 1

)
.

Choosing t =
√

2/3 and using 1/4 ≤ r again, we obtain

1

t2
− 1 =

1

2
≤ 1

2
log

(1− r)2 + 1

(1− r)2

and thus

1

8
J(r, u) ≤

√
3 log

(1− r)2 + 1

(1− r)2
.

The trivial inequalities (1− r)2 + 1 ≤ 2 ≤ 22 imply

J(r, u) ≤ 16
√

3 log
2

1− r
.
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Substitution into (90) and the inequality (1− r2) ≤ 2(1− r) gives (82). ¤
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