
Proof of estimate (7) in Reconstruction of convex bodies from brightness functions, by
R. J. Gardner and Peyman Milanfar.

(Note: No attempt is made here to obtain the best-possible such estimate. It is enough for
our purposes to establish a bound that is polynomial in R0 and r−1

0 .)

The following result is stated and proved by Groemer [3, Theorem 5.5.7]: For origin-symmetric
convex bodies K and L in Rd with r0B ⊂ K, L ⊂ R0B and α ∈ (0, 2/(d(d + 4)),

δ(K, L) ≤ cd(α, R0, r0)δ(ΠK, ΠL)α.

While studying the proof, we shall use Groemer’s notation, except in using bK for the brightness
function and V instead of his v for volume.

At the top of [3, p. 232], it is stated that

|V1(K, L)− V (K)| ≤ max{ηd(α,R0), 2κdR
d
0εd(α)−dα}|bK(u)− bL(u)|dα. (1)

From [3, Lemma 5.5.10], specifically by comparing [3, (5.5.20)] with [3, (5.5.26)], we get

ηd(α,R0) = θd(R0)
(

2(1− dα)
d + 2

+ 1
)

, (2)

and by comparing [3, (5.5.25)] with the previous unnumbered displayed inequality, and using the
estimates for s(K), s(L), and Λ(F ) after it, we also have

θd(R0) ≤ 2d+1σd−1

dσd
2σdR

d
0 + const(d) = O(Rd

0). (3)

Putting (1), (2), and (3) together, we obtain

|V1(K, L)− V (K)| = O(Rd
0)|bK(u)− bL(u)|dα. (4)

Now (4) and [3, (5.5.27)] show that

δ(K, L) = O(R0)µd(R0, r0)δ(ΠK, ΠL)α. (5)

Next, to estimate µd(R0, r0), we have from [3, p. 233, lines 8 and 9], using the fact that m ≤ 1,

µd(R0, r0) = V (K)1/d
(
bd(R0, r0)1/d + ed(r0)R0(κdr0)−1/d

)
. (6)

Here ed(r0) can be estimated from the expressions on [3, p. 232]. Beginning with

λ− 1 ≤ m

V (K)
,

we get from
1
λ
− 1 ≤ m

V (L)
that

1− λ ≤ λm

V (L)
≤

(
1 +

m

V (K)

)
m

V (L)
.

Using m ≤ 1 and
V (K), V (L) ≥ κdr

d
0 ,

1



2

this gives

|λ− 1| ≤ ed(r0)m,

where

ed(r0) =
(
1 + (κdr

d
0)
−1

)
(κdr

d
0)
−1. (7)

So ed(r0) = O(r−2d
0 ) if r0 ≤ 1. From [3, p. 232, lines -4 and -3], we have

bd(R0, r0) = kd(R0, r0)
(
1 + κdR

d
0ed(r0)

)
= O(Rd

0r
−2d
0 )kd(R0, r0)

if r0 ≤ 1. Using this expression, (6), (7), and V (K) ≤ κnRd
0, we get

µd(R0, r0) = O(R2
0r
−2
0 )

(
kd(R0, r0)1/d + O(r−2d+1

0 )
)

. (8)

It remains to estimate kd(R0, r0). This appears in [3, (2.5.13)], which implies that for origin-
symmetric convex bodies K and L in Rd with r0B ⊂ K,L ⊂ R0B,

δ(K ′, L′) ≤ kd(R0, r0)
(
V1(K, L)− V (K)(d−1)/dV (L)1/d

)
, (9)

where K ′ = (1/V (K))K and L′ = (1/V (L))L.
The estimate (9) was proved by Diskant, and unfortunately Groemer only refers to Diskant’s

papers for the proof. Therefore we have to study these papers and deal with his different notation.
We will compromise by working with origin-symmetric convex bodies K and L in Rd with r0B ⊂
K, L ⊂ R0B, but otherwise our notation will be quite compatible with Diskant’s.

Diskant’s [2, Lemma 3], for origin-symmetric convex bodies, is the following statement. Let K
and L be origin-symmetric convex bodies in Rd with r0B ⊂ K, L ⊂ R0B, and let

∆(K, L) = V1(K,L)d − V (K)d−1V (L).

There is an ε0 > 0 such that if ∆(K,L) < ε0, and V (K) = V (L), then

δ(K, L) ≤ C∆(K,L)1/d. (10)

Here ε0 and C depend only on d, r0, and R0.
In what follows, we shall assume that r0 < 1 and R0 > 1, and often use the estimates

κdr
d
0 ≤ V (K), V (L), V1(K, L) ≤ κdR

d
0. (11)
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First we must match Diskant’s statement (10) with Groemer’s (9) . Let K ′ = (1/V (K))K and
L′ = (1/V (L))L. Then V (K ′) = V (L′) = 1, so (10) applied to K ′ and L′ implies that

δ(K ′, L′)d ≤ Cd
(
V1(K ′, L′)d − 1

)

= Cd

(
V1(K,L)d

V (K)d−1V (L)
− 1

)

≤
(

C

κdr
d
0

)d (
V1(K, L)d − V (K)d−1V (L)

)

≤
(

C

κdr
d
0

)d (
V1(K, L)− V (K)

d−1
d V (L)

1
d

) d−1∑

i=0

V1(K, L)i
(
V (K)

d−1
d V (L)

1
d

)d−1−i

≤
(

C

κdr
d
0

)d (
V1(K, L)− V (K)

d−1
d V (L)

1
d

)
d(κdR

d
0)

d−1.

Comparing this with (9), we see that

kd(R0, r0) =

((
C

κdr
d
0

)d

d(κdR
d
0)

d−1

)1/d

= O

(
Rd−1

0

rd
0

)
C. (12)

Next we focus on Diskant’s proof of (10). We remind the reader of his assumption that V (K) =
V (L), and begin by obtaining a more explicit form of [2, Lemma 2]. In the proof of [2, Lemma 2],
we find

∆(K, L) ≥ V (K)
d(d−2)

d−1

(
V1(L,K)

d
d−1 − V (L)V (K)

1
d−1

)
. (13)

Using

∆(L,K) = V1(L,K)d − V (L)d−1V (K)

=
(
V1(L,K)

d
d−1 − V (L)V (K)

1
d−1

) d−2∑

i=0

V1(L,K)
id

d−1

(
V (L)V (K)

1
d−1

)d−2−i
,

we obtain from (13) that

∆(K, L) ≥ (κdr
d
0)

d(d−2)
d−1

(d− 1)(κdR
d
0)

d(d−2)
d−1

∆(L,K).

This gives

∆(L,K) ≤ C∆(K,L), (14)

where

C = O

(
Rd2

0

rd2

0

)
. (15)

In Diskant’s earlier work [1], he defines

q(K, L) = max{λ : λL ⊂ K}
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and shows in [1, Theorem 1] that

q = q(K, L) ≥
(

V1(K,L)
V (L)

) 1
d−1

−

(
V1(K, L)

d
d−1 − V (K)V (L)

1
d−1

) 1
d

V (L)
1

d−1

.

This estimate is used in the proof of [1, Theorem 2] (compare the first displayed set of inequalities
in this proof) to show that

q ≥ 1− ∆(K,L)1/d

V (L)
1

d−1 V1(K, L)
d−2
d−1

.

From this and (11) we obtain

q ≥ 1− 1
κdr

d
0

∆(K, L)1/d. (16)

(This is a slightly different constant from that obtained by Diskant.) Interchanging K and L and
using (14), we obtain by the same method,

q1 = q(L,K) ≥ 1− 1
κdr

d
0

∆(L,K)1/d ≥ 1− C
1/d

κdr
d
0

∆(K, L)1/d. (17)

Also in the proof of [1, Theorem 2], Diskant notes that q, q1 ≤ 1. In [1, Lemma 4], it is proved
that if q, q1 ≤ 1, then

δ(K, L) ≤ 2R0

q1
(1− qq1) = 2R0

(
1
q1
− q

)
.

Therefore, using (16) and (17), we obtain

δ(K, L) ≤ 2R0


 1

1− C
1/d

κdrd
0
∆(K, L)1/d

− 1 +
1

κdr
d
0

∆(K, L)1/d


 ≤ C∆(K, L)1/d,

where, by (15),

C =
2R0

κdr
d
0

(1 + C
1/d) = O

(
Rd+1

0

r2d
0

)
. (18)

Thus we have obtained (10) without the need for the restriction ∆(K, L) < ε0.
Putting together (5), (8), (12), and (18), we obtain

δ(K,L) = O

(
R5

0

r2d+1
0

)
δ(ΠK, ΠL)α.
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